Aiming at the complex geometric nonlinearity and contact behavior of threaded connections, this study proposes a novel approach by constructing a finite element model equivalent to the Iwan model for nonlinear analysis. The innovation of this work lies in the development of a subroutine based on the Iwan model, which effectively simulates the nonlinear contact behavior inherent in threaded connections during tightening. This is followed by constructing a finite element model in Abaqus software to investigate the relationship between the applied torque and the preload force of the threads. The accuracy and nonlinearity of the model are verified against theoretical results. Furthermore, the study explores the impact of the coefficient of friction and rotational amplitude on the mechanical response of the threaded connection, providing new insights into how these factors influence preload force, stress concentration, and the risk of deformation. The results show that the finite element model based on the Iwan model can accurately capture the complex contact behavior of the threaded joint. Specifically, it is found that increasing the friction coefficient enhances the preload force but may also increase stress concentration and deformation risks. Similarly, increasing the rotational amplitude increases the preload force but may lead to plastic deformation and higher stress concentration, which has not been sufficiently addressed in previous studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803084 | PMC |
http://dx.doi.org/10.1038/s41598-025-89135-5 | DOI Listing |
Small
March 2025
Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
Using small molecules to integrate multifunctional surfaces within a nanopore is an effective way to endow smart responsibilities of nanofluidic diodes. However, the complex synthesis of the small molecules hinders their further application in achieving multifunctional surfaces. Here, a simple and versatile design concept is reported for fabricating bioinspired integrated nanofluidic diodes with adjustable surface chemistry by confining a spirocyclic fluorescein derivative, 6-aminofluorescein (6-AF), within an asymmetric track-etched nanopore.
View Article and Find Full Text PDFFront Bioeng Biotechnol
February 2025
Aragon Institute of Research Engineering (I3A), Universidad de Zaragoza, Zaragoza, Spain.
Introduction: Laser refractive surgeries are a safe option for low-to-moderate refractive corrections, providing excellent visual outcomes. Over the years, various procedures have been introduced into clinical practice, but the most performed today remain Photorefractive Keratectomy (PRK), Laser Keratomileusis (LASIK), and Small Incision Lenticule Extraction (SMILE). Although laser refractive treatments are considered safe, clinicians have focused on the risk of post-surgical ectasia, a rare but serious complication.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
March 2025
School of Engineering, Computing and Mathematics, Oxford Brooks University, Oxford, UK.
This study introduces an adaptive three-dimensional (3D) image synthesis technique for creating variational realizations of fibrous meniscal tissue microstructures. The method allows controlled deviation from original geometries by modifying parameters such as porosity, pore size and specific surface area of image patches. The unbiased reconstructed samples matched the morphological and hydraulic properties of original tissues, with relative errors generally below 10%.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
March 2025
Department of Engineering, University of Cambridge, Cambridge, UK.
Crestal placement of short plateau implants in compromised jaws may cause implant failure due to bone overstress. The aim was to evaluate the impact of different sized implants on adjacent bone overload and the implant load-bearing ability in terms of the proposed index-ultimate functional load (UFL). Three-dimensional models of osseointegrated implants placed in types III and IV bone were analysed by the FEM for the case of patient-specific variations in cortical bone elasticity modulus.
View Article and Find Full Text PDFMaterials (Basel)
March 2025
Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA.
Magnetorheological elastomers (MREs) are smart composite materials with tunable mechanical properties by ferromagnetic particle interactions. This study applied the microstructure-based dipole and Maxwell methods to evaluate the magneto-mechanical coupling and magnetostrictive responses of MREs, focusing on various particle distributions. The finite element modeling of representative volume elements with fixed volume fractions revealed that the straight chain microstructure exhibits the most significant magnetostrictive effect due to its low initial shear stiffness and significant magnetic force contributions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!