Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The control efficacy of deep reinforcement learning (DRL) compared with classical periodic forcing is numerically assessed for a turbulent separation bubble (TSB). We show that a control strategy learned on a coarse grid works on a fine grid as long as the coarse grid captures main flow features. This allows to significantly reduce the computational cost of DRL training in a turbulent-flow environment. On the fine grid, the periodic control is able to reduce the TSB area by 6.8%, while the DRL-based control achieves 9.0% reduction. Furthermore, the DRL agent provides a smoother control strategy while conserving momentum instantaneously. The physical analysis of the DRL control strategy reveals the production of large-scale counter-rotating vortices by adjacent actuator pairs. It is shown that the DRL agent acts on a wide range of frequencies to sustain these vortices in time. Last, we also introduce our computational fluid dynamics and DRL open-source framework suited for the next generation of exascale computing machines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802851 | PMC |
http://dx.doi.org/10.1038/s41467-025-56408-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!