Atrial fibrillation (AF) is more prevalent in patients with elevated interleukin (IL)-1β levels. Here we show that daily administration of IL-1β for 15 days sensitizes mice to AF, leading to fibrosis, accumulation of β-pleated sheet proteins in the left atrium, and systemic inflammation, resembling the pathophysiological changes observed in patients with AF. IL-1β administration creates a positive feedback loop, dependent on the IL-1 receptor (IL-1R) activity in cardiac resident macrophages. This results in increased caspase-1 maturation in the left atrium and elevated Il1b and Casp1 transcription in atrial macrophages. IL-1β treatment accelerated action potential and Ca restitution in the left atrium, leading to action-potential shortening. This, along with increased caspase-1 maturation and IL-1R signaling, was essential for inducing AF. Lack of IL-1R in macrophages, but not cardiomyocytes, prevented IL-1β-induced AF sensitivity. By depleting recruited macrophages or deleting IL-1R specifically in cardiac resident macrophages, we further demonstrate that IL-1β/IL-1R signaling in these resident macrophages is responsible for increased AF susceptibility. These findings offer insights into the therapeutic potential of targeting IL-1β/IL-1R signaling in patients with AF and emphasize the importance of recognizing different underlying causes in this patient group.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s44161-025-00610-8 | DOI Listing |
Sci Adv
March 2025
Center for Infectious Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China.
Invasive infections by encapsulated bacteria are the major cause of human morbidity and mortality. The liver resident macrophages, Kupffer cells, form the hepatic firewall to clear many encapsulated bacteria in the blood circulation but fail to control certain high-virulence capsule types. Here we report that the spleen is the backup immune organ to clear the liver-resistant serotypes of (pneumococcus), a leading human pathogen.
View Article and Find Full Text PDFJ Immunol
March 2025
INSERM U1015, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, 94805, France.
Microglia, the major population of brain resident macrophages, differentiate from yolk sac progenitors in the embryo and play multiple nonimmune roles in brain organization throughout development and life. Various microglia subtypes have been described by transcriptomic and proteomic signatures, involved metabolic pathways, morphology, intracellular complexity, time of residency, and ontogeny, both in development and in disease settings. Such macrophage heterogeneity increases with aging or neurodegeneration.
View Article and Find Full Text PDFJ Immunol
March 2025
Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States.
Alveolar macrophages (AMs) are lung-resident myeloid cells and airway sentinels for inhaled pathogens and environmental particles. While AMs can be highly inflammatory in response to respiratory viruses, they do not mount proinflammatory responses to all airborne pathogens. For example, we previously showed that AMs fail to mount a robust proinflammatory response to Mycobacterium tuberculosis.
View Article and Find Full Text PDFAging Dis
February 2025
Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China.
As the resident macrophages of the brain, microglia are crucial immune cells specific to the central nervous system (CNS). They constantly surveil their surroundings and trigger immunological reactions, playing a key role in various neurodegenerative diseases (ND). As illnesses progress, microglia exhibit multiple phenotypes.
View Article and Find Full Text PDFJ Exp Med
May 2025
Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
Tissue-resident macrophages adopt distinct gene expression profiles and exhibit functional specialization based on their tissue of residence. Recent studies have begun to define the signals and transcription factors that induce these identities. Here we describe an unexpected and specific role for the broadly expressed transcription factor Krüppel-like factor 2 (KLF2) in the development of embryonically derived large cavity macrophages (LCMs) in the serous cavities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!