Photocatalytic synthesis of HO is a proton-coupled electron transfer (PCET) process, which is generally jeopardized by the kinetic mismatch between photogenerated electron transfer and proton supply. To address the challenge, here we proposed a new core-shell design of nanocomposite catalysts comprising of carbon quantum dot (CD)-topped TiO nanoparticles encapsulated by polydopamine (PDA) shells, which delivered stable catalytic activity across a pH range of 1-9, exhibiting a photocatalytic generation rate of HO that reached 18.14 mmol g h in methanol and 8.66 mmol g h in water. This extraordinary, pH-tolerant photocatalytic generation of HO was benefited from the innovative use of CDs, interspaced between the TiO cores and PDA shells, not only as a reservoir of protons to buffer the local acidic microenvironment but also as a proton/electron dual booster to sustain an excellent kinetic match between the proton and photogenerated electron transfer, thus enabling the O reduction to selectively proceed via two-electron reaction pathway over a wide pH span.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202501357 | DOI Listing |
Angew Chem Int Ed Engl
March 2025
South China University of Technology, State Key Laboratory of Luminescent Materials and Devices, Wushan Road 381, 510640, Guangzhou, CHINA.
Energy loss (Eloss) between optical energy gap (Eg) and open-circuit voltage (eVoc) sets efficiency upper limits for organic solar cells (OSCs). Nevertheless, further breaking the limit of Eloss in OSCs is challenging, especially via structurally simple materials in binary OSCs. Herein, a structurally simple non-halogenated polymer donor, namely PBDCT, is developed for realizing high-efficiency OSCs with record-breaking Eloss.
View Article and Find Full Text PDFJ Am Chem Soc
March 2025
Department of Chemistry, and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, PR China.
Research on room temperature phosphorescence (RTP) of metal-organic frameworks (MOFs) has been rapidly developed in recent years. However, it is still challenging to realize long-wavelength RTP (>580 nm). In this article, a new strategy is proposed to achieve the red-shifted RTP through constructing dual-ligand MOFs.
View Article and Find Full Text PDFInorg Chem
March 2025
Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
Redox-inactive metal ions functioning as Lewis acids (LA) play a significant role in modulating the redox reactivity of metal-oxygen intermediates such as metal-oxo, metal-superoxo, and metal-peroxo species. In photosystem II (PS-II), the redox-inactive metal ion Ca is critical for O activation, although its precise function remains unclear. Inspired by nature's use of redox-inactive metal ions, this study aims to characterize complexes of high-valent Cu(III) bound Lewis acids, (where M = Zn, Eu, Yb, and Sc), through various spectroscopic techniques, including UV-vis and resonance Raman spectroscopic analyses.
View Article and Find Full Text PDFLangmuir
March 2025
Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province. School of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China.
The photoelectrochemical properties of hematite-based photoanodes are hindered by severe carrier recombination and poor reaction activity, which is a major challenge. Herein, we coupled zirconium-doped α-FeO (Zr:FeO) and phosphating cobalt molybdate electrocatalyst (P-CoMoO) to ameliorate the above difficulties. The conductivity and carrier density of hematite significantly increase by Zr doping.
View Article and Find Full Text PDFAnal Chim Acta
May 2025
State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, PR China; College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, PR China; Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China; Center for Instrumental Analysis, Guangxi University, Nanning, Guangxi, 530004, PR China. Electronic address:
Tryptophan (Trp) is an essential amino acid obtained from human diet. It is involved not only in de novo biosynthesis of proteins but also in complex metabolic pathways. Redox transformation of tryptophan is under-explored in comparison with kynurenine, serotonin and indole pyruvate pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!