Epigenetic alterations could potentially have a significant impact on the adverse reproductive consequences in connection with exposure to environmental contaminants. In this study, the changes in Thyroid Stimulating Hormone Receptor (TSHR) and Ataxia Telangiectasia Mutated (ATM) genes methylation related to exposure to certain Organochlorine Pesticides (OCLs) in women with unexplained female infertility (UFI) were investigated. Promoter methylation of TSHR and ATM genes was conducted using methylation specific PCR in blood from 113 UFI and 103 controls. The methylation percentage of the TSHR was 48 % in UFI and 50 % in controls and the difference was statistically insignificant. But, promoter methylation of ATM was significantly higher in UFI than controls (67.9 % and 43.3 % respectively, p = 0.042). Logistic regression analysis also revealed that some OCLs (2,4-DDE, γ-HCH, 2,4-DDT, β-HCH, 4,4-DDT, and 4,4-DDE) affected methylation of ATM promoter. Among total OCLs, there were significant correlations between the ATM promoter methylation and Ʃ3 HCH, Σ2 DDE, and Ʃ7 OCLs in an adjusted model. The study posits that OCLs could modify epigenetic markers, thereby impacting gene function. Hypermethylation of the ATM gene in UFI cases, and its association with selected and total OCLs, underscores the detrimental effects of the accumulation of environmental stressors on female reproductive health, potentially leading to UFI. Furthermore, the role of ATM-mediated DNA Double-Strand Break repair in reproductive health was highlighted. Additionally, this research underscores the need for further investigation into the relationship between ATM gene promoter methylation, pesticide exposure, and UFI across various populations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2025.149288DOI Listing

Publication Analysis

Top Keywords

promoter methylation
16
organochlorine pesticides
8
unexplained female
8
female infertility
8
atm genes
8
methylation
8
methylation atm
8
atm promoter
8
total ocls
8
atm gene
8

Similar Publications

The activity of Wnt inhibitory factor 1 (WIF1) is reduced upon promoter methylation and is involved in cartilage degradation in osteoarthritis. This study aims to investigate the mechanism by which WIF1 methylation is involved in chondrocyte damage in ankylosing spondylitis (AS). A model of chondrocyte inflammatory injury in AS was constructed by stimulation with interleukin (IL)-17.

View Article and Find Full Text PDF

Long non-coding RNA (lncRNA) TINCR has been shown to play a crucial regulatory role in various tumors. However, its specific mechanism of action in cutaneous squamous cell carcinoma (CSCC) remains unclear. This study aimed to explore the role of lncRNA TINCR in CSCC.

View Article and Find Full Text PDF

The Enhancer-Promoter-Mediated Transcription During Neurite Regrowth of Injured Cortical Neurons.

Cells

February 2025

Institute of Molecular Medicine, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan.

Brain injuries can result from accidents, warfare, sports injuries, or brain diseases. Identifying regeneration-associated genes (RAGs) during epigenome remodeling upon brain injury could have a significant impact on reducing neuronal death and subsequent neurodegeneration for patients with brain injury. We previously identified several WNT genes as RAGs involved in the neurite regrowth of injured cortical neurons.

View Article and Find Full Text PDF

Purpose: Evolving evidence demonstrates the role of epigenetics in the pathogenesis of osteoarthritis (OA), whereas in terms of mechanism, DNA methylation has received the highest attention thus far. This systematic review summarizes the current knowledge of DNA methylation and its influence on the pathogenesis of OA.

Methods: A protocol in alignment with the PRISMA guidelines was employed to systematically review eight bibliographic databases between 1 January 2015 and 31 January 2021, to identify associations between DNA methylation and articular chondrocytes in OA.

View Article and Find Full Text PDF

Introduction: Head and Neck Squamous Cell Carcinoma (HNSCC) is the sixth most common malignancy in the world. High mortality and severe complications are critical features of head and neck cancer. Changes in intracellular signaling pathways are a general tumor formation and progression mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!