Epstein-Barr Virus-Encoded Latent Membrane Protein 2A Promotes Immune Escape by Upregulating SYK/Nuclear Factor-κB Signaling in Diffuse Large B-cell Lymphoma.

Lab Invest

Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Institute of Pathology, Fudan University, Shanghai, China. Electronic address:

Published: February 2025

Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma (DLBCL) is a highly aggressive malignancy with inferior outcomes after treatment, which might be largely attributed to the immune escape induced by EBV via modulation of the immune checkpoint programmed cell death 1 (PD-1)/PD-ligand 1 (PD-L1). This study aimed to explore the role that EBV-encoded latent membrane protein 2A (LMP2A) played in the mechanisms of immune escape of EBV+ DLBCL cells. Ten cases each of EBV+ DLBCL with and without immunohistochemical expression of LMP2A were submitted for evaluation of PD-L1, p65/nuclear factor-κB (NF-κB), phosphorylated SYK (pSYK), and p-p65 expression by immunohistochemistry. To observe the relationship between LMP2A expression and the tumor immune microenvironment, tumor-infiltrating CD4+ and CD8+ T-cell levels were also evaluated by immunofluorescence assay. Compared with LMP2A- cases, LMP2A+ cases exhibited more pronounced biologic aggressiveness and featured a significantly higher level of pSYK, p-p65, and PD-L1 and increased CD4+/CD8+ ratio. In vitro experiments were conducted to ascertain the effects of SYK and p65/NF-kB signaling on PD-L1 expression in the OCI-LY8 cells. After transfection with LMP2A, the expression levels of pSYK, p65, p-p65, and PD-L1 were all elevated, and knockdown of p65 or pSYK in LMP2A-transfected DLBCL cells resulted in PD-L1 inhibition. Our work indicates that LMP2A may mimic B-cell receptor and trigger the SYK/NF-κB signaling, which subsequently influences the PD-L1 levels of tumor cells and the tumor immune microenvironment, thus facilitating the immune evasion of lymphoma cells. These findings may have clinical implications for modulating or improving the therapeutic strategies of patients with EBV+ DLBCL.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.labinv.2025.104104DOI Listing

Publication Analysis

Top Keywords

immune escape
12
ebv+ dlbcl
12
latent membrane
8
membrane protein
8
diffuse large
8
large b-cell
8
b-cell lymphoma
8
dlbcl cells
8
psyk p-p65
8
lmp2a expression
8

Similar Publications

While therapeutic vaccines are a promising strategy for inducing human immunodeficiency virus (HIV) control, HIV vaccines tested to date have offered limited benefit to people living with HIV. The barriers to success may include the use of vaccine platforms and/or immunogens that drive weak or suboptimal immune responses, immune escape and/or immune dysfunction associated with chronic infection despite effective antiretroviral therapy. Combining vaccines with immune modulators in a safe manner may address some of the challenges and thus increase the efficacy of therapeutic HIV vaccines.

View Article and Find Full Text PDF

Tumor Glycosylation: A Main Player in the Modulation of Immune Responses.

Eur J Immunol

March 2025

Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, Amsterdam, The Netherlands.

Tumor immune escape refers to the process by which cancer cells evade detection and destruction by the immune system. Glycosylation, a post-translational modification that is altered in almost all cancer types, plays a crucial role in this process by modulating immune responses. This review examines our current understanding of how aberrant tumor glycosylation contributes to a tolerogenic microenvironment, focusing on specific glycosylation signatures-fucosylation, truncated O-glycans, and sialylation-and the immune receptors involved.

View Article and Find Full Text PDF

The rapid spread of SARS-CoV-2 and its continuing impact on human health has prompted the need for effective and rapid development of monoclonal antibody therapeutics. In this study, we investigate polyclonal antibodies in serum and B cells from the whole blood of three donors with SARS-CoV-2 immunity to find high-affinity anti-SARS-CoV-2 antibodies to escape variants. Serum IgG antibodies were selected by their affinity to the receptor-binding domain (RBD) and non-RBD sites on the spike protein of Omicron subvariant B.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus (SARS-CoV/CoV-2) genome encodes 16 non-structural proteins (nsps), which coordinate cell remodeling, virus replication and participate in viral evasion. Notably, nsp3 contains a protein module termed Macro domain, which carries IFN antagonist activity that interferes with host innate immunity response. This domain is able to bind and hydrolyze ADP-ribose derivatives.

View Article and Find Full Text PDF

Objective: Regulatory Factor X (RFX) transcription factors have been implicated in different cancers. Ras association domain family (RASSF) has been shown clinical significance in lung cancer. This paper was to investigate the interaction of RFX2 and RASSF1 in lung adenocarcinoma (LUAD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!