Efficient diagnosis of retinal disorders using dual-branch semi-supervised learning (DB-SSL): An enhanced multi-class classification approach.

Comput Med Imaging Graph

School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of Knowledge Automation for Industrial Processes, Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China. Electronic address:

Published: April 2025

The early diagnosis of retinal disorders is essential in preventing permanent or partial blindness. Identifying these conditions promptly guarantees early treatment and prevents blindness. However, the challenge lies in accurately diagnosing these conditions, especially with limited labeled data. This study aims to enhance the diagnostic accuracy of retinal disorders using a novel Dual-Branch Semi-Supervised Learning (DB-SSL) approach that leverages both labeled and unlabeled data for multi-class classification of eye diseases. Employing Color Fundus Photography (CFP), our research integrates a Convolutional Neural Network (CNN) that integrates features from two parallel branches. This framework effectively handles the complexity of ocular imaging by utilizing self-training-based semi-supervised learning to explore relationships within unlabeled data. We propose and evaluate six CNN models: ResNet50, DenseNet121, MobileNetV2, EfficientNetB0, SqueezeNet1_0, and a hybrid of ResNet50 and MobileNetV2 on their ability to classify four key eye conditions: cataract, diabetic retinopathy, glaucoma, and normal, using a large, diverse OIH dataset containing 4217 fundus images. Among the evaluated models, ResNet50 emerged as the most accurate, achieving 93.14 % accuracy on unseen data. The model demonstrates robustness with a sensitivity of 93 % and specificity of 98.37 %, along with a precision and F1 Score of 93 % each, and a Cohen's Kappa of 90.85 %. Additionally, it exhibits an AUC score of 97.75 % nearing perfection. Systematically removing certain components from the ResNet50 model further validates its efficacy. Our findings underscore the potential of advanced CNN architectures combined with semi-supervised learning in enhancing the accuracy of eye disease classification systems, particularly in resource-constrained environments where the procurement of large labeled datasets is challenging and expensive. This approach is well-suited for integration into Clinical Decision Support Systems (CDSS), providing valuable diagnostic assistance in real-world clinical settings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compmedimag.2025.102494DOI Listing

Publication Analysis

Top Keywords

semi-supervised learning
16
retinal disorders
12
diagnosis retinal
8
dual-branch semi-supervised
8
learning db-ssl
8
multi-class classification
8
unlabeled data
8
models resnet50
8
efficient diagnosis
4
disorders dual-branch
4

Similar Publications

Background: Amyotrophic lateral sclerosis (ALS) leads to rapid physiological and functional decline before causing untimely death. Current best-practice approaches to interdisciplinary care are unable to provide adequate monitoring of patients' health. Passive in-home sensor systems enable 24×7 health monitoring.

View Article and Find Full Text PDF

Objective: This study aims to investigate and analyze the differentially expressed genes (DEGs) in CD34 + hematopoietic stem cells (HSCs) from patients with myelodysplastic syndromes (MDS) through bioinformatics analysis, with the ultimate goal of uncovering the potential molecular mechanisms underlying pathogenesis of MDS. The findings of this study are expected to provide novel insights into clinical treatment strategies for MDS.

Methods: Initially, we downloaded three datasets, GSE81173, GSE4619, and GSE58831, from the public Gene Expression Omnibus (GEO) database as our training sets, and selected the GSE19429 dataset as the validation set.

View Article and Find Full Text PDF

Anomaly detection is a common application of machine learning. Out-of-distribution (OOD) detection in particular is a semi-supervised anomaly detection technique where the detection method is trained only on the inlier (in-distribution) samples-unlike the fully supervised variant, the distribution of the outlier samples are never explicitly modeled in OOD detection tasks. In this work, we design a novel GAN-based OOD detection network specifically designed to protect a cyber-physical signal systems from novel Trojan malware called non-control data (NCD) attack that evades conventional malware detection techniques.

View Article and Find Full Text PDF

Optimizing sample size for supervised machine learning with bulk transcriptomic sequencing: a learning curve approach.

Brief Bioinform

March 2025

Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 633 Third Avenue, New York, NY 10017, United States.

Accurate sample classification using transcriptomics data is crucial for advancing personalized medicine. Achieving this goal necessitates determining a suitable sample size that ensures adequate classification accuracy without undue resource allocation. Current sample size calculation methods rely on assumptions and algorithms that may not align with supervised machine learning techniques for sample classification.

View Article and Find Full Text PDF

Toward autonomous event-based sensorimotor control with supervised gait learning and obstacle avoidance for robot navigation.

Front Neurosci

February 2025

Department of Electrical and Computer Engineering (ECE), Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States.

Miniature robots are useful during disaster response and accessing remote or unsafe areas. They need to navigate uneven terrains without supervision and under severe resource constraints such as limited compute, storage and power budget. Event-based sensorimotor control in edge robotics has potential to enable fully autonomous and adaptive robot navigation systems capable of responding to environmental fluctuations by learning new types of motion and real-time decision making to avoid obstacles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!