Uptake, impact, adaptive mechanisms, and phytoremediation of heavy metals by plants: Role of transporters in heavy metal sequestration.

Plant Physiol Biochem

Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India. Electronic address:

Published: April 2025

Heavy metals (HMs) pose severe threats to both the environment and its inhabitants, leading to reduced crop productivity and hazardous impacts on human and animal health. Metallurgical activities in peri-urban areas are major contributors to the terrestrial deposition of various HMs. Upon entering plant the cells, HMs disrupt structural and physiological processes, inducing stress responses and triggering metabolic pathways for stress adaptations. The plants have evolved specialized transport systems to regulate the uptake, transport, and cellular concentrations of these metals. HMs often exploit transporters of essential nutrients, such as phosphate, hexose, and sulfate to gain entry into plant cells. Key players include zinc receptor transporter (ZRT1) and iron receptor transporter (IRT1), both part of the ZIP (Zinc Iron Permease) family, as well as heavy metal-associated ATPases (HMAs) and ATP binding cassette transporter C (ABCC-type transporters). Hyperaccumulating plants thrive in harsh environments with elevated concentrations of toxic ions, such as sodium, chloride, and heavy metals including arsenic (As), mercury (Hg), cadmium (Cd), lead (Pb), silicon (Si), boron (B), antimony (Sb), germanium (Ge), and tellurium (Te), by compartmentalizing these ions into vacuoles. The accumulation of heavy metals or metalloids like cadmium (Cd), lead (Pb), arsenic (As), chromium (Cr), nickel (Ni), manganese (Mn), zinc (Zn), thallium (Tl), cobalt (Co), cupper (Cu), and selenium (Se) has been extensively reported in various hyperaccumulating plant species. The halophytes, known for their inherent salinity tolerance, exhibit superior resilience to HM stress due to overlapping mechanisms of ion compartmentatlization and detoxification. This review provides an in-depth analysis on the effects of heavy metals on the metabolic processes, growth, and development of plants, emphasizing heavy tolerance mechanisms with a particular focus on halophytes. The role of HM transporters in metal sequestration and detoxification is discussed, along with the potential of hyperaccumulating halophytes for phytoremediation of HM-contaminated soils.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2025.109578DOI Listing

Publication Analysis

Top Keywords

heavy metals
20
heavy
8
role transporters
8
metal sequestration
8
metals hms
8
plant cells
8
receptor transporter
8
cadmium lead
8
metals
6
uptake impact
4

Similar Publications

With the advancement of industrial production and urban modernization, pollution from heavy metal ions and the accumulation of solid waste have become critical global environmental challenges. Establishing an effective recycling system for solid waste and removing heavy metals from wastewater is essential. Coal gangue was used in this study as the primary material for the synthesis of a fully coal gangue-based phosphorus-silicon-aluminum (SAPO-5) molecular sieve through a hydrothermal process.

View Article and Find Full Text PDF

-Induced Liver Damage Through Ferroptosis in Rat Model.

Cells

February 2025

College of Veterinary Medicine, Jilin University, Changchun 130062, China.

(1) Background: (CE) is an -induced worldwide parasitic zoonosis and is a recognized public health and socio-economic concern. The liver is the major target organ for CE's infective form protoscolex (PSCs), which causes serious liver damage and endangers the host's life. Reports show that PSC infection causes liver cell Fe metabolism disorder and abnormal deposition of Fe in liver cells and results in liver cell death.

View Article and Find Full Text PDF

The utilisation of heavy metal-based nanoparticles in cosmetic products has been steadily increasing because of their extraordinary physicochemical properties and benefits. In this thorough review, we will delve into the various types of nanoparticles, such as green nanoparticles, metallic nanoparticles, and carbon-based nanoparticles, with a special focus on heavy metal-based nanoparticles. These heavy metal-based nanoparticles exhibit exceptional physical and mechanical properties, making them suitable materials for cosmetic and personal care products.

View Article and Find Full Text PDF

This study compared the biomechanical behavior of three widely used dental materials-zirconia, lithium disilicate (IPS e.max CAD), and 3D-printed composite (VarseoSmile CrownPlus)- for maxillary anterior bridge restorations. Finite element analysis (FEA) was employed to evaluate the mechanical response of these materials under normal occlusal forces, replicating real clinical conditions.

View Article and Find Full Text PDF

Background: Multiple pregnancy constitutes a large metabolic expense, so women with twin pregnancies and neonates born as twins might be at risk for micronutrient deficiencies. Therefore, the aim of the study was to assess the supplementation used and supply with key micronutrients: iron, vitamin B12, folic acid and vitamin D in women with twin pregnancies and the correlations with cord blood indicators.

Methods: Maternal and cord blood samples were collected from 51 patients with twin pregnancies and 102 newborns born from those pregnancies between October 2020 and September 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!