Septoria tritici blotch (STB) is a devastating fungal disease affecting durum and bread wheat worldwide. Tunisian durum wheat landraces are reported to be valuable genetic resources for resistance to STB and should prominently be deployed in breeding programs to develop new varieties resistant to STB disease. In this study, a collection of 367 old durum and 6 modern wheat genotypes previously assessed using single Tunisian Zymoseptoria tritici isolate TUN06 during 2016 and 2017 and TM220 isolate during 2017 were phenotyped for resistance to a mixture of isolates (BULK) under field conditions. Significant correlations for disease traits using the three different inoculums were observed. Using 7638 SNP markers, fifty-one marker-trait associations (MTAs) for STB resistance were identified by genome-wide association study (GWAS) at Bonferroni correction threshold of -log10(P) > 5.184 with phenotypic variance explained (PVE) reaching up to 58%. A total of eleven QTL were identified using TUN06 isolate mean disease scoring (TUNMeanD and TUNMeanA) including threeQTL controlling resistance to both isolates TUN06 and TM220. A major QTL was identified on each of chromosomes 1B, 4B, 5A, and 7B, respectively. The QTL on 7B chromosome colocalized with Stb8 identified in bread wheat. Four QTL including the major QTL identified on chromosome 1B were considered as novel. SNP linked to the significant QTL have the potential to be used in marker-assisted selection for breeding for resistance to STB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11801541PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0310390PLOS

Publication Analysis

Top Keywords

qtl identified
12
genome-wide association
8
association study
8
septoria tritici
8
tritici blotch
8
tunisian durum
8
durum wheat
8
bread wheat
8
resistance stb
8
major qtl
8

Similar Publications

The fundamental skills for motor coordination and motor control emerge through development. Neurodevelopmental disorders such as developmental coordination disorder (DCD) lead to impaired acquisition of motor skills. This study investigated motor behaviors that reflect the core symptoms of human DCD through the use of BXD recombinant inbred strains of mice that are known to have divergent phenotypes in many behavioral traits, including motor activity.

View Article and Find Full Text PDF

Sweetness is a main component of the table beet (Beta vulgaris L.) flavor profile and a key determinant of its market success for fresh consumption. Total dissolved solids (TDS) is a proxy for sugar content in produce and are easily measured through a refractometer, making TDS valuable in breeding programs focused on increasing sweetness.

View Article and Find Full Text PDF

Background: Viral nervous necrosis (VNN) is an important viral disease threatening global aquaculture sustainability and affecting over 50 farmed and ecologically important fish species. A major QTL for resistance to VNN has been previously detected in European sea bass, but the underlying causal gene(s) and mutation(s) remain unknown. To identify the mechanisms and genetic factors underpinning resistance to VNN in European sea bass, we employed integrative analyses of multiple functional genomics assays in European sea bass.

View Article and Find Full Text PDF

Genetic dissection of flowering time and fine mapping of qFT.A02-1 in rapeseed (Brassica napus L.).

Theor Appl Genet

March 2025

Laboratory for Research and Utilization of Qinghai-Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China.

qFT.A02-1, a major quantitative trait locus controlling flowering time in Brassica napus, was mapped to a 104.8-kb region on chromosome A02, and BnaA02G0156900ZS is the candidate gene in response for flowering time.

View Article and Find Full Text PDF

Whole plant transpiration responses of common bean (Phaseolus vulgaris L.) to drying soil: Water channels and transcription factors.

Plant Physiol Biochem

March 2025

Michigan State University, Department of Plant, Soil and Microbial Sciences, 1066 Bogue St, East Lansing, MI, USA; McGill University, Department of Plant Sciences, Montreal, Canada. Electronic address:

Common bean (Phaseolus vulgaris L.) is the main legume crop for direct human consumption worldwide. Among abiotic factors affecting common bean, drought is the most limiting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!