Fibrosis is the final common pathway leading to end stage chronic kidney disease (CKD). However, the function of protein palmitoylation in renal fibrosis and underlying mechanisms remain unclear. In this study, we observed that the expression of the palmitoyltransferase ZDHHC18 was significantly elevated in unilateral ureteral obstruction (UUO) and folic acid (FA)-induced renal fibrosis mouse models, and was significantly upregulated in the fibrotic kidneys of chronic kidney disease patients. Functionally, tubule-specific deletion of ZDHHC18 attenuated tubular epithelial cells partial epithelial-to-mesenchymal transition (EMT), then reduced production of profibrotic cytokine and alleviates tubulointerstitial fibrosis. In contrast, ZDHHC18 overexpression exacerbated progressive renal fibrosis. Mechanistically, ZDHHC18 catalyzed the palmitoylation of HRAS, which is pivotal for its translocation to the plasma membrane and subsequent activation. HRAS palmitoylation promoted downstream phosphorylation of MEK/ERK and further activated RREB1, enhancing SMAD binding to the Snai1 cis-regulatory regions. Taken together, our findings suggest that ZDHHC18 plays a crucial role in renal fibrogenesis and presents a potential therapeutic target for combating kidney fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI180242DOI Listing

Publication Analysis

Top Keywords

renal fibrosis
16
hras palmitoylation
8
chronic kidney
8
kidney disease
8
fibrosis
7
zdhhc18
6
renal
5
zdhhc18 promotes
4
promotes renal
4
fibrosis development
4

Similar Publications

Vaccarin Ameliorates Renal Fibrosis by Inhibiting Ferroptosis via Nrf2/SLC7A11/GPX4 Signaling Pathway.

Drug Des Devel Ther

March 2025

Department of Nephropathy, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, People's Republic of China.

Purpose: Vaccarin is a natural flavonoid glycoside with anti-inflammatory, antioxidant and nephroprotective effects. However, the effects of vaccarin on renal fibrosis (RF) and its molecular mechanisms remain unclear. This study aimed to investigate the effects of vaccarin on RF and its molecular mechanisms.

View Article and Find Full Text PDF

Nuclear receptor co-activator 4 (NCOA4) acts as a selective cargo receptor that binds to ferritin, a cytoplasmic iron storage complex. By mediating ferritinophagy, NCOA4 regulates iron metabolism and releases free iron in the body, thus playing a crucial role in a variety of biological processes, including growth, development, and metabolism. Recent studies have shown that NCOA4-mediated ferritinophagy is closely associated with the occurrence and development of iron metabolism-related diseases, such as liver fibrosis, renal cell carcinoma, and neurodegenerative diseases.

View Article and Find Full Text PDF

Background: Acute kidney injury (AKI) is a common and severe clinical condition. However, the underlying mechanisms of AKI have not been fully elucidated, and effective treatment options remain limited. Studies have shown that immune cells play a critical role in AKI, with regulatory T cells (Tregs) being one of the most important immunosuppressive lymphocytes.

View Article and Find Full Text PDF

African American (AA) kidney transplant recipients exhibit a higher rate of graft loss compared with other racial and ethnic populations, highlighting the need to identify causative factors. Here, in the Genomics of Chronic Allograft Rejection cohort, pretransplant blood RNA sequencing revealed a cluster of four consecutive missense single-nucelotide polymorphisms (SNPs), within the leukocyte immunoglobulin-like receptor B3 (LILRB3) gene, strongly associated with death-censored graft loss. This SNP cluster (named LILRB3-4SNPs) encodes missense mutations at amino acids 617-618 proximal to a SHP1/2 phosphatase-binding immunoreceptor tyrosine-based inhibitory motif.

View Article and Find Full Text PDF

Desmodium caudatum (Thunb.) DC. Extract Attenuates Hyperuricemia-Induced Renal Fibrosis via Modulating TGF-β1 Pathway and Uric Acid Transporters: Evidence from In Vitro and In Vivo Studies.

J Ethnopharmacol

March 2025

Department of Nutrition, Chung Shan Medical University, Taichung City, 40201, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, 40201, Taiwan. Electronic address:

Ethnopharmacological Relevance: Desmodium caudatum (Thunb.) DC., a traditional Chinese medicinal herb, has been used to treat conditions such as rheumatic back pain, diarrhea, jaundice-related hepatitis, and abscesses; it also serves as an anthelmintic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!