Hypoxia influences the epithelial-mesenchymal transition (EMT) through the remodeling of the chromatin structure, epigenetics, and alternative splicing. Hypoxia drives CCCTC-binding factor (CTCF) induction through hypoxia-inducible factor 1-alpha (HIF1α), which promotes EMT, although the underlying mechanisms remain unclear. We find that hypoxia significantly increases CTCF occupancy at various EMT-related genes. We present a CTCF-mediated intricate mechanism promoting EMT wherein CTCF binding at the collagen type V alpha 1 chain (COL5A1) promoter is crucial for COL5A1 upregulation under hypoxia. Additionally, hypoxia drives exon64A inclusion in a mutually exclusive alternative splicing event of COL5A1exon64 (exon64A/64B). Notably, CTCF mediates COL5A1 promoter-alternatively spliced exon upstream looping that regulates DNA demethylation at distal exon64A. This further regulates the CTCF-mediated RNA polymerase II pause at COL5A1exon64A, leading to its inclusion in promoting the EMT under hypoxia. Genome-wide study indicates the association of gained CTCF occupancy with the alternative splicing of many cancer-related genes, similar to the proposed model. Specifically, disrupting the HIF1α-CTCF-COL5A1exon64A axis through the dCas9-DNMT3A system alleviates the EMT in hypoxic cancer cells and may represent a novel therapeutic target in breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2025.115267DOI Listing

Publication Analysis

Top Keywords

alternative splicing
16
ctcf mediates
8
breast cancer
8
hypoxia drives
8
ctcf occupancy
8
promoting emt
8
emt
6
hypoxia
6
ctcf
5
hypoxia-induced ctcf
4

Similar Publications

The emergence and rapid spread of multidrug-resistant strains pose a great challenge to the quality and safety of agricultural products and the efficient use of pesticides. Previously unidentified fungicides and targets are urgently needed to combat -associated infections as alternative therapeutic options. In this study, the promising compound Z24 demonstrated efficacy against all tested plant pathogenic fungi.

View Article and Find Full Text PDF

Fine-tuning of Wnt signaling by RNA surveillance factor Smg5 in the mouse craniofacial development.

iScience

March 2025

College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.

The specific roles of nonsense-mediated mRNA decay (NMD), a translation-dependent RNA quality control mechanism that degrades mRNAs containing premature termination codons (PTCs), in mammalian craniofacial development have remained unclear. Here, we show that knockout of the essential NMD factor in mouse craniofacial neural crest cells leads to hypoplastic mandibles, subsequently inducing tongue mispositioning and cleft palate formation. Furthermore, loss triggers massive cell apoptosis and disrupts cell differentiation, accompanied by widespread alterations in alternative splicing and a surge in PTC-containing mRNA levels.

View Article and Find Full Text PDF

Background: Changing ocean temperatures are already causing declines in populations of marine organisms. Predicting the capacity of organisms to adjust to the pressures posed by climate change is a topic of much current research effort, particularly for species we farm or harvest. To explore one measure of phenotypic plasticity, the physiological compensations in response to heat stress as might be experienced in a marine heatwave, we exposed Yellowtail Kingfish (Seriola lalandi) to sublethal heat stress, and used the transcriptome in gill and muscle, benchmarked against heat shock proteins and oxidative stress indicators, to characterise the acute heat stress response (6 h after the initiation of stress), and the physiological compensation to that response (24 and 72 h after the initiation of stress).

View Article and Find Full Text PDF

Insects have evolved a diversity of regulatory mechanisms to determine their sex. Understanding the molecular regulation mechanisms of insect sex determination is of great significance in revealing the general law of insect sex determination and providing potential routes for the genetic manipulation of pest species. Although the sex determination cascade and doublesex (dsx) gene functions have been well described in some holometabolous insects, little is known about this cascade in hemimetabolous insects.

View Article and Find Full Text PDF

There is increasing evidence for the co-occurrence of adaptive within-generation (WGP) and transgenerational (TGP) plasticity and the ecological scenarios driving both types of plasticity. However, some aspects of their transcriptional mechanisms, such as the role of alternative splicing and the consequences of parental acclimation across life stages, have remained elusive. We explore these fundamental questions by considering the desert endemic Drosophila mojavensis for which prior evidence indicates adaptive thermal acclimation within and across generations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!