Responsive Magnetic Polymer Nanocomposites through Thermal-Induced Structural Reorganization.

ACS Nano

Laboratory for High Performance Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.

Published: February 2025

Polymer nanocomposites (PNCs), which feature a hybrid network of soft polymers filled with nanoparticles, hold promise for application in soft robots due to their tunable physiochemical properties. Under certain environmental conditions, PNCs undergo stimuli-responsive structural rearrangement and transform the energy of the ambient environment into diverse uses, for example, repairing the injuries and reconfiguring the shapes of the materials. We develop PNCs with the ability of thermal-responsive restructuring by the stepwise assembly of functional components, including magnetite nanoparticles, silylated cellulose, and polydimethylsiloxane. We investigate the dynamic changes of the nano- and submicron structure of the magnetic PNCs upon the stimulation of heating based on a combined analytical approach: using dynamic mechanical analysis to interpret the viscoelastic properties of the PNC and in situ small-angle X-ray scattering to quantify the clustering of NPs. Based on these results, we formulate a structural model for the heating-induced evolution of the nano- to submicrometer assemblies in the magnetic PNC. Moreover, thermal-induced restructuring of magnetic PNCs leads to additional favorable functions, such as the abilities of healing, welding, reprocessing, and responses to photo and magneto stimuli. Our design provides a versatile means to develop responsive PNCs for applications in soft robots, sensors, and actuators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841046PMC
http://dx.doi.org/10.1021/acsnano.4c14311DOI Listing

Publication Analysis

Top Keywords

polymer nanocomposites
8
soft robots
8
magnetic pncs
8
pncs
6
responsive magnetic
4
magnetic polymer
4
nanocomposites thermal-induced
4
thermal-induced structural
4
structural reorganization
4
reorganization polymer
4

Similar Publications

The sensitive, efficient, and simultaneous assay of creatinine and urea in different body fluid is crucial for the daily detection and treatment of chronic kidney disease. Here, we exploited a versatile composite surface enhanced Raman scattering (SERS) substrate of polydimethylsiloxane (PDMS)-flower-like ZIF-67@Ag nanoparticles (NPs) based on simple in-situ growth and ion sputtering strategies. The plasmonic Ag NPs assembled on the three-dimensional anisotropic ZIF-67 matrix, facilitating numerous resonant electromagnetic "hotspots".

View Article and Find Full Text PDF

Polymeric nanocomposites in a biological interface: From a molecular view to final applications.

Colloids Surf B Biointerfaces

March 2025

Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil. Electronic address:

Polymeric nanocomposites have been valuable materials for the pharmaceutical and biomedical fields because they associate the unique properties of a material on a nanoscale with a polymeric matrix, with a synergistic outcome that improves their physical, chemical, and mechanical properties. Understanding the nature of the physical and chemical interactions and effects that take place at the polymer-nanomaterial interface is crucial to predict and explain how the nanocomposite behaves when set forth a health-related application and faces a biological interface. Therefore, this review aimed to assemble and examine experimental articles in which the molecular-level interaction between nanomaterials and polymer matrices were determinants of the biological outcome.

View Article and Find Full Text PDF

Effect of Various Nanofillers on Piezoelectric Nanogenerator Performance of P(VDF-TrFE) Nanocomposite Thin Film.

Nanomaterials (Basel)

March 2025

Department of Chemical and Biochemical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea.

Flexible polymer-based piezoelectric nanogenerators (PENGs) have gained significant interest due to their ability to deliver clean and sustainable energy for self-powered electronics and wearable devices. Recently, the incorporation of fillers into the ferroelectric polymer matrix has been used to improve the relatively low piezoelectric properties of polymer-based PENGs. In this study, we investigated the effect of various nanofillers such as titania (TiO), zinc oxide (ZnO), reduced graphene oxide (rGO), and lead zirconate titanate (PZT) on the PENG performance of the nanocomposite thin films containing the nanofillers in poly(vinylidene fluoride-co-trifluoro ethylene) (P(VDF-TrFE)) matrix.

View Article and Find Full Text PDF

Electromagnetic Interference Shielding of a Sequential Dual-Curing Thiol-Epoxy System Reinforced with GNPs with High Shape Memory.

ACS Appl Mater Interfaces

March 2025

Materials Science and Engineering Area, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Madrid, Spain.

Modern electronics face several challenges during operation, such as interference of disruptive electromagnetic signals and high temperatures within a limited space. Both electromagnetic interference (EMI) and thermal management could be tackled simultaneously by employing smart efficient materials with high thermal and electrical conductivity. A dual-curing epoxy system, a new subset of adaptable materials, could potentially solve those challenges, with the proper selection of the reinforcement.

View Article and Find Full Text PDF

In diabetic wounds, the presence of hyperglycemia is often accompanied by a persistent inflammatory response, oxidative stress damage, impaired angiogenesis and bacterial infections around the wound, resulting in impaired proliferation of dermal and epidermal cells and impaired skin regeneration in diabetic wounds. To solve the above problems, this study designed a near-infrared (NIR) light-responsive multifunctional poloxamer hydrogel (EGF/PDA-MXene Gel). The Gel is composed of two-dimensional nanomaterials (2D NMs) MXene as the core, modified by polymer, further loaded with epidermal growth factor (EGF), and has antibacterial, antioxidant, photothermal properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!