Background And Aims: Primary liver cancer, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), has low response rates to existing treatments, highlighting the urgent need for novel treatment options. Adenosine A3 receptor (ADORA3) signaling has emerged as a potential target. Namodenoson, an ADORA3 agonist, has shown promise in early clinical trials for HCC. However, further data are required to clarify ADORA3 expression patterns in liver cancer, mechanisms of action, and the potential for combination therapies to inform patient selection for future clinical trials.
Methods: Patient-derived tissue microarrays and RNA-sequencing were employed to investigate ADORA3 expression. Cellular responses to ADORA3 stimulation and combination treatments were studied in HCC and CCA cell lines and patient-derived organoids (PDOs). Genome-wide RNA-Seq analysis, mRNA analysis, and DigiWest protein profiling were performed.
Results: Tissue microarray analysis revealed higher ADORA3 expression in nonmalignant samples and a subset of tumors with weak or absent ADORA3 expression. This was supported by RNA sequencing data from The Cancer Genome Atlas and needle biopsy samples. Cell lines and PDOs exhibited antiproliferative effects with the ADORA3 agonist Namodenoson, confirmed by receptor dependency tests with specific antagonists and siRNA experiments. Genome-wide RNA-Seq analysis suggested chromatin remodeling events after ADORA3 stimulation. mRNA expression and DigiWest profiling identified downregulation of histone deacetylases and histone H3 modifications. Combination treatments with different ADORA3 agonists and histone deacetylase inhibitors significantly enhanced antiproliferative effects in almost all selected combinations, supported by investigations in PDOs.
Conclusion: ADORA3 expression varies considerably in HCC or CCA, ranging from high to absent receptor detection. This observation might help to identify patients for clinical studies. Additionally, Namodenoson's epigenetic modulating activity suggests epigenetic drugs as promising candidates for combination treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11795062 | PMC |
http://dx.doi.org/10.1016/j.gastha.2024.11.006 | DOI Listing |
Gastro Hep Adv
November 2024
Department Internal Medicine I, Eberhard-Karls University, Tuebingen, Germany.
Background And Aims: Primary liver cancer, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), has low response rates to existing treatments, highlighting the urgent need for novel treatment options. Adenosine A3 receptor (ADORA3) signaling has emerged as a potential target. Namodenoson, an ADORA3 agonist, has shown promise in early clinical trials for HCC.
View Article and Find Full Text PDFIr Vet J
January 2025
Animal and Poultry Production Division, Department of Animal and Poultry Breeding, Desert Research Center, Cairo, Egypt.
Brucellosis is a highly contagious zoonotic bacterial disease. It has considerable negative consequences on the animal production industry worldwide. The objective of this study was to investigate the genetic and molecular variations in Shami goat susceptible to Brucella infection.
View Article and Find Full Text PDFAndrology
December 2024
Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Centre Hospitalier Universitaire de Québec - Research Centre, and Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle - Université Laval, Québec, QC, Canada.
Introduction: The epididymis creates an optimal acidic luminal environment for sperm maturation and storage. In epididymal principal cells (PCs), proton secretion is activated by the accumulation of the sodium-proton exchanger type 3, NHE3 (SLC9A3), in apical stereocilia. PCs also secrete ATP, which is hydrolyzed into adenosine by ectonucleotidases.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
J Psychopharmacol
January 2025
Shanghai Health Commission Key Lab of Artificial Intelligence-Based Management of Inflammation and Chronic Diseases, Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China.
Background: Ketamine has received attention owing to its rapid and long-lasting antidepressant effects; however, its clinical application is restricted by its addictiveness and adverse effects. S-ketamine, which is the S-enantiomer of ketamine, is considered safer and better tolerated by patients than ketamine.
Aims: This study aimed to identify the key gene targets and potential signalling pathways associated with the mechanism of S-ketamine in major depressive disorder (MDD) treatment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!