Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_session7c8ps6d3oa58up7i89r14bp9h4fka56j): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Cardiac organoids offer sophisticated 3D structures that emulate key aspects of human heart development and function. This review traces the evolution of cardiac organoid technology, from early stem cell differentiation protocols to advanced bioengineering approaches. We discuss the methodologies for creating cardiac organoids, including self-organization techniques, biomaterial-based scaffolds, 3D bioprinting, and organ-on-chip platforms, which have significantly enhanced the structural complexity and physiological relevance of cardiac models. We examine their applications in fundamental research and medical innovations, highlighting their potential to transform our understanding of cardiac biology and pathology. The integration of multiple cell types, vascularization strategies, and maturation protocols has led to more faithful representations of the adult human heart. However, challenges remain in achieving full functional maturity and scalability. We critically assess the current limitations and outline future directions for advancing cardiac organoid technology. By providing a comprehensive analysis of the field, this review aims to catalyze further innovation in cardiac tissue engineering and facilitate its translation to clinical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11795835 | PMC |
http://dx.doi.org/10.1016/j.mtbio.2025.101505 | DOI Listing |
Neurobiol Dis
March 2025
Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5G 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada. Electronic address:
Alzheimer's Disease (AD) remains an overwhelming epidemiologic and economic burden on our healthcare systems, affecting an estimate of 11 % of individuals aged 65 years and older. Increasing evidence of the role of the blood-brain barrier (BBB) in AD pathology lends support to the vascular hypothesis of AD, which posits that damage to cerebral vasculature and impairments to cerebral blood flow are major contributors to neurodegeneration in AD. While the question remains whether the dysfunction of the BBB is the cause or consequence of the disease, understanding of the relationship between vascular pathology and AD is growing increasingly complex, warranting the need for better tools to study vasculature in AD.
View Article and Find Full Text PDFAnn Med
December 2025
Department of Assisted Reproductive Centre, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China.
Background: Butyrate may inhibit SARS-CoV-2 replication and affect the development of COVID-19. However, there have been no systematic comprehensive analyses of the role of butyrate metabolism-related genes (BMRGs) in COVID-19.
Methods: We performed differential expression analysis of BMRGs in the brain, liver and pancreas of COVID-19 patients and controls in GSE157852 and GSE151803.
Acta Pharmacol Sin
March 2025
School of Medicine, South China University of Technology, Guangzhou, 510006, China.
SARS-CoV-2 can encode circular RNAs (circRNAs); however, the potential effects of exogenous SARS-CoV-2 circRNAs on cardiovascular sequelae remain unknown. Three circRNAs derived from the nucleocapsid (N) gene of SARS-CoV-2, namely, circSARS-CV2-Ns, were identified for functional studies. In particular, circSARS-CV2-N1368 was shown to enhance platelet adhesiveness to endothelial cells (ECs) and inhibit EC-dependent vascular relaxation.
View Article and Find Full Text PDFMater Today Bio
April 2025
Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Italy.
Induced pluripotent stem cells (iPSCs), carrying the patient's genetic background, open the path to advanced modeling. The feasibility of recapitulating complex pathophysiological scenarios depends on iPSC's ability to differentiate into the plurality of specific organ resident cells, on their maturation and networking. To this end, a strong interest has arisen in organoids, 3D structures, obtained by exploiting iPSC natural capability to self-assemble and rebuild organ parts.
View Article and Find Full Text PDFAdv Mater
March 2025
Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China.
Post-myocardial infarction (MI), the rapid decrease in pH triggers myocardial cell acidosis, which compromises the therapeutic efficacy of exosomes in MI. The groundbreaking research in the human cardiac organoid MI model suggests that exosomes, when paired with pH adjustment, dramatically reduce cardiomyocyte mortality while maintaining their proliferative potential, underscoring the importance of pH regulation in myocardial preservation. Micro-robot mounted micro-needle (MN) patch is thus proposed, targeting MI-acidic microenvironmet, to deliver exosomes into deep injured tissue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!