Introduction: Extracellular vesicles (EVs) shed from tumor cells into peripheral circulation or other body fluids are promising biomarkers for cancer diagnosis with enormously long circulation. Consequently, precise methods for differentiating normal and tumor-associated EVs (TAEs) are required.
Methods: This study used quantifiable antibody-DNA conjugate-assisted quantitative methods combined with proximity ligation technology to detect TAEs. The antibody-DNA conjugate contained one antibody associated with three oligonucleotides for signal amplification. The antibody in the conjugate can recognize the surface tumor antigens of TAEs. Simultaneously, DNA in the conjugate is attached to the surfaces of TAEs and holds the signal amplification post, converting protein identities to DNA amplification for protein detection, even at the molecular level.
Results: These findings revealed that TAEs can be quantitatively detected using DNA-mediated quantitative polymerase chain reaction (qPCR). Antibody-DNA conjugates were used to recognize the epithelial cell adhesion molecule (EpCAM) antigen on the TAE surface and quantify the antigen using qPCR for cancer analysis.
Discussion: This method proposed a new quantitative detection approach for TAEs, which aim to identify specific EV-associated markers for diagnostic or therapeutic, this method could inspire a new idea for tumor diagnosis and detection of other diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794122 | PMC |
http://dx.doi.org/10.3389/fmolb.2025.1531108 | DOI Listing |
Cells
March 2025
Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, São Paulo, Brazil.
Ovarian cancer (OC) is characterized by high mortality rates due to late diagnosis, recurrence, and metastasis. Here, we show that extracellular signaling molecules secreted by adipose-derived mesenchymal stem cells (ASCs) and OC cells-either in the conditioned medium (CM) or within small extracellular vesicles (sEVs)-modulate cellular responses and drive OC progression. ASC-derived sEVs and CM secretome promoted OC cell colony formation, invasion, and migration while upregulating tumor-associated signaling pathways, including TGFβ/Smad, p38MAPK/ERK1/2, Wnt/β-catenin, and MMP-9.
View Article and Find Full Text PDFCells
February 2025
Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
Adipose-derived regenerative cells (ADRCs) are one of the most promising cell sources that possess significant therapeutic effects. They have now become a main source of cell therapy for the treatment of ischemic diseases due to their easy accessibility, expansion, and differentiation. Additionally, ADRCs can release multiple paracrine factors and extracellular vesicles that contribute to tissue regeneration by promoting angiogenesis, regulating inflammation, alleviating apoptosis, and inhibiting fibrosis.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
March 2025
Department of Neurology, University Hospital Gießen and Marburg, Justus-Liebig-University Gießen, Gießen, Germany.
Extracellular vesicles (EVs) convey complex signals between cells that can be used to promote neuronal plasticity and neurological recovery in brain disease models. These EV signals are multimodal and context-dependent, making them unique therapeutic principles. This review analyzes how EVs released from various cell sources control neuronal metabolic function, neuronal survival and plasticity.
View Article and Find Full Text PDFJ Am Chem Soc
March 2025
CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
Accurate diagnosis of early gastric cancer is valuable for asymptomatic populations, while current endoscopic examination combined with pathological tissue biopsy often encounters bottlenecks for early-stage cancer and causes pain to patients. Liquid biopsy shows promise for noninvasive diagnosis of early gastric cancer; however, it remains a challenge to achieve accurate diagnosis due to the lack of highly sensitive and specific biomarkers. Herein, we propose a protocol combining metabolomics profiling from plasma extracellular vesicles (EVs) and machine learning to identify the metabolomics discrepancies of early gastric cancer individuals from other populations.
View Article and Find Full Text PDFJ Obstet Gynaecol Res
March 2025
Precision Medicine and Integrated Nano-Diagnostics (P-MIND) Research Group, Office of the Dean, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.
Aim: Preeclampsia (PE) is a severe pregnancy-related disorder characterized by hypertension and multi-organ failure, primarily affecting the maternal vasculature and placenta. The aim of this review is to explain the molecular mechanisms behind PE by investigating the relationship between exosome release and complement activation, which could provide insight into potential therapeutic targets.
Methods: This review analyzes existing literature on the role of the complement system and exosomes in the pathophysiology of PE.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!