NEIL3 and TOP2A as key drivers of esophageal cancer through WNT signaling.

Biomol Biomed

Tumor Medical Center, The First Affiliated Hospital, Jiangxi Medical College of Nanchang University, Nanchang, China.

Published: January 2025

Esophageal cancer (EC) is a highly aggressive malignancy with limited treatment options. Nei like DNA glycosylase 3 (NEIL3) and DNA topoisomerase II alpha (TOP2A) have been identified as potential therapeutic targets, though their roles in EC remain unclear. This study investigates the effects of NEIL3 overexpression and TOP2A knockdown, focusing on the WNT signaling pathway. ECA109 esophageal cancer cells were used to assess the impact of NEIL3 overexpression and TOP2A knockdown on proliferation, colony formation, migration, invasion, and apoptosis. The involvement of the WNT signaling pathway was also explored. NEIL3 overexpression significantly enhanced proliferation, colony formation, migration, and invasion while reducing apoptosis. In contrast, TOP2A knockdown suppressed these functions and promoted apoptosis, independent of NEIL3. NEIL3 overexpression could not reverse the effects of TOP2A knockdown. Both NEIL3 and TOP2A acted through the WNT signaling pathway. In vivo, NEIL3 knockdown reduced tumor size and weight via WNT pathway modulation. NEIL3 and TOP2A play key roles in EC progression through the WNT signaling pathway. Targeting these molecules may offer promising therapeutic strategies for EC.

Download full-text PDF

Source
http://dx.doi.org/10.17305/bb.2025.11365DOI Listing

Publication Analysis

Top Keywords

wnt signaling
20
neil3 overexpression
16
top2a knockdown
16
signaling pathway
16
neil3 top2a
12
esophageal cancer
12
neil3
10
overexpression top2a
8
proliferation colony
8
colony formation
8

Similar Publications

Esophageal adenocarcinoma (EAC) is a highly aggressive malignancy with increasing incidence and poor survival rates, primarily due to late-stage diagnosis. This cancer often develops from Barrett's Esophagus (BE), a precancerous condition linked to chronic gastroesophageal reflux disease (GERD). The transition from BE to EAC is a complex multistep process involving numerous genetic, epigenetic, and molecular changes that lead to the malignant transformation of the esophageal epithelium.

View Article and Find Full Text PDF

TGFβ-activated Asporin interacts with STMN1 to promote prostate cancer docetaxel chemoresistance and metastasis by upregulating the Wnt/β-catenin signaling pathway.

Drug Resist Updat

March 2025

Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China; Department of Urology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China. Electronic address:

Aims: Prostate cancer (PCa) remains a significant challenge in oncology due to high rates of drug resistance following standard treatment with docetaxel-based chemotherapy. Asporin (ASPN) has been regarded as an oncogene and its upregulation is closely associated with malignant behavior and poor prognosis in multiple cancers. Studies indicated that abnormal activation of the Wnt/β-catenin signaling pathway is prevalent in PCa.

View Article and Find Full Text PDF

Cellular processes such as proliferation, differentiation, and tissue homeostasis are significantly influenced by the Wnt/β-catenin signaling pathway. Dysregulation of this pathway has been implicated in the development of various types of cancer. This study focuses on the emerging role of kinesin superfamily proteins (KIFs) in modulating cancer signaling.

View Article and Find Full Text PDF

The activity of Wnt inhibitory factor 1 (WIF1) is reduced upon promoter methylation and is involved in cartilage degradation in osteoarthritis. This study aims to investigate the mechanism by which WIF1 methylation is involved in chondrocyte damage in ankylosing spondylitis (AS). A model of chondrocyte inflammatory injury in AS was constructed by stimulation with interleukin (IL)-17.

View Article and Find Full Text PDF

Age-related alterations in the skeletal system are linked to decreased bone mass, a reduction in bone strength and density, and an increased risk of fractures and osteoporosis. Therapeutics are desired to stimulate bone regeneration and restore imbalance in the bone remodeling process. Quercetin (Qu), a naturally occurring flavonoid, induces osteogenesis; however, its solubility, stability, and bioavailability limit its therapeutic use.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!