Esophageal cancer (EC) is a highly aggressive malignancy with limited treatment options. Nei like DNA glycosylase 3 (NEIL3) and DNA topoisomerase II alpha (TOP2A) have been identified as potential therapeutic targets, though their roles in EC remain unclear. This study investigates the effects of NEIL3 overexpression and TOP2A knockdown, focusing on the WNT signaling pathway. ECA109 esophageal cancer cells were used to assess the impact of NEIL3 overexpression and TOP2A knockdown on proliferation, colony formation, migration, invasion, and apoptosis. The involvement of the WNT signaling pathway was also explored. NEIL3 overexpression significantly enhanced proliferation, colony formation, migration, and invasion while reducing apoptosis. In contrast, TOP2A knockdown suppressed these functions and promoted apoptosis, independent of NEIL3. NEIL3 overexpression could not reverse the effects of TOP2A knockdown. Both NEIL3 and TOP2A acted through the WNT signaling pathway. In vivo, NEIL3 knockdown reduced tumor size and weight via WNT pathway modulation. NEIL3 and TOP2A play key roles in EC progression through the WNT signaling pathway. Targeting these molecules may offer promising therapeutic strategies for EC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.17305/bb.2025.11365 | DOI Listing |
Clin Chim Acta
March 2025
Department of Medicine, Hunan University of Arts and Science, Changde, Hunan Province 415000, China.
Esophageal adenocarcinoma (EAC) is a highly aggressive malignancy with increasing incidence and poor survival rates, primarily due to late-stage diagnosis. This cancer often develops from Barrett's Esophagus (BE), a precancerous condition linked to chronic gastroesophageal reflux disease (GERD). The transition from BE to EAC is a complex multistep process involving numerous genetic, epigenetic, and molecular changes that lead to the malignant transformation of the esophageal epithelium.
View Article and Find Full Text PDFDrug Resist Updat
March 2025
Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China; Department of Urology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China. Electronic address:
Aims: Prostate cancer (PCa) remains a significant challenge in oncology due to high rates of drug resistance following standard treatment with docetaxel-based chemotherapy. Asporin (ASPN) has been regarded as an oncogene and its upregulation is closely associated with malignant behavior and poor prognosis in multiple cancers. Studies indicated that abnormal activation of the Wnt/β-catenin signaling pathway is prevalent in PCa.
View Article and Find Full Text PDFCellular processes such as proliferation, differentiation, and tissue homeostasis are significantly influenced by the Wnt/β-catenin signaling pathway. Dysregulation of this pathway has been implicated in the development of various types of cancer. This study focuses on the emerging role of kinesin superfamily proteins (KIFs) in modulating cancer signaling.
View Article and Find Full Text PDFMol Biotechnol
March 2025
The Third Clinical Medicine College, Ningxia Medical University (People's Hospital of Ningxia Hui Autonomous Region), Yinchuan, 750002, China.
The activity of Wnt inhibitory factor 1 (WIF1) is reduced upon promoter methylation and is involved in cartilage degradation in osteoarthritis. This study aims to investigate the mechanism by which WIF1 methylation is involved in chondrocyte damage in ankylosing spondylitis (AS). A model of chondrocyte inflammatory injury in AS was constructed by stimulation with interleukin (IL)-17.
View Article and Find Full Text PDFAging Dis
March 2025
Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea.
Age-related alterations in the skeletal system are linked to decreased bone mass, a reduction in bone strength and density, and an increased risk of fractures and osteoporosis. Therapeutics are desired to stimulate bone regeneration and restore imbalance in the bone remodeling process. Quercetin (Qu), a naturally occurring flavonoid, induces osteogenesis; however, its solubility, stability, and bioavailability limit its therapeutic use.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!