Background: Diversifying animal cultivation demands efficient genotyping for enabling genomic selection, but non-model species lack efficient genotyping solutions. The aim of this study was to optimize a genotyping-by-sequencing (GBS) double-digest RAD-sequencing (ddRAD) pipeline. Bovine data was used to automate the bioinformatic analysis. The application of the optimization was demonstrated on non-model European whitefish data.

Results: DdRAD data generation was designed for a reliable estimation of relatedness and is scalable to up to 384 samples. The GBS sequencing yielded approximately one million reads for each of the around 100 assessed samples. Optimizing various strategies to create a de-novo reference genome for variant calling (mock reference) showed that using three samples outperformed other building strategies with single or very large number of samples. Adjustments to most pipeline tuning parameters had limited impact on high-quality data, except for the identity criterion for merging mock reference genome clusters. For each species, over 15k GBS variants based on the mock reference were obtained and showed comparable results with the ones called using an existing reference genome. Repeatability analysis showed high concordance over replicates, particularly in bovine while in European whitefish data repeatability did not exceed earlier observations.

Conclusions: The proposed cost-effective ddRAD strategy, coupled with an efficient bioinformatics workflow, enables broad adoption of ddRAD GBS across diverse farmed species. While beneficial, a reference genome is not obligatory. The integration of Snakemake streamlines the pipeline usage on computer clusters and supports customization. This user-friendly solution facilitates genotyping for both model and non-model species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796084PMC
http://dx.doi.org/10.1186/s12864-025-11296-4DOI Listing

Publication Analysis

Top Keywords

reference genome
16
mock reference
12
genomic selection
8
farmed species
8
efficient genotyping
8
non-model species
8
european whitefish
8
reference
7
data
5
genome
5

Similar Publications

Protocol for isolating the single bacteriocyte from whiteflies for single-cell RNA-seq analysis.

STAR Protoc

March 2025

Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; Shenyang Key Laboratory of Surveillance and Management for Vegetable Diseases and Insect Pests, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China. Electronic address:

Bacteriocytes are specialized insect cells adapted to harbor symbionts. However, their low number in individual whiteflies makes obtaining enough for transcriptome sequencing challenging. Here, we present a protocol for the isolation of whitefly bacteriocytes.

View Article and Find Full Text PDF

Background: Cultivated strawberry (Fragaria xananassa Duch.), an allo-octoploid species arising from at least 3 diploid progenitors, poses a challenge for genomic analysis due to its high levels of heterozygosity and the complex nature of its polyploid genome.

Results: This study developed the complete haplotype-phased genome sequence from a short-day strawberry, 'Florida Brilliance' without parental data, assembling 56 chromosomes from telomere to telomere.

View Article and Find Full Text PDF

serotype 23B, a non-vaccine serotype, has shown an increasing prevalence and penicillin non-susceptibility among carriage and invasive pneumococcal disease (IPD) isolates. Recently, a novel penicillin non-susceptible genotype has emerged, named 23B1. In the framework of the Belgian pneumococcal carriage study, we studied the prevalence of 23B/23B1 among 586 23B strains (2016-2022) in 172 day care centers from 6- to 30-month-old children and among 130 pediatric 23B IPD isolates (2007-2021).

View Article and Find Full Text PDF

The fundamental skills for motor coordination and motor control emerge through development. Neurodevelopmental disorders such as developmental coordination disorder (DCD) lead to impaired acquisition of motor skills. This study investigated motor behaviors that reflect the core symptoms of human DCD through the use of BXD recombinant inbred strains of mice that are known to have divergent phenotypes in many behavioral traits, including motor activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!