Cavity electrodynamics offers a unique avenue for tailoring ground-state material properties, excited-state engineering, and versatile control of quantum matter. Merging these concepts with high-field physics in the terahertz (THz) spectral range opens the door to explore low-energy, field-driven cavity electrodynamics, emerging from fundamental resonances or order parameters. Despite this demand, leveraging the full potential of field-driven material control in cavities is hindered by the lack of direct access to the intra-cavity fields. Here, we demonstrate a new concept of active cavities, consisting of electro-optic Fabry-Pérot resonators, which measure their intra-cavity electric fields on sub-cycle timescales. We thereby demonstrate quantitative retrieval of the cavity modes in amplitude and phase, over a broad THz frequency range. To enable simultaneous intra-cavity sampling alongside excited-state material control, we design a tunable multi-layer cavity, enabling deterministic design of hybrid cavities for polaritonic systems. Our theoretical models reveal the origin of the avoided crossings embedded in the intricate mode dispersion, and will enable fully-switchable polaritonic effects within arbitrary materials hosted by the hybrid cavity. Electro-optic cavities (EOCs) will therefore serve as integrated probes of light-matter interactions across all coupling regimes, laying the foundation for field-resolved intra-cavity quantum electrodynamics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799363 | PMC |
http://dx.doi.org/10.1038/s41377-024-01685-x | DOI Listing |
Light Sci Appl
February 2025
Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, 14195, Berlin, Germany.
Cavity electrodynamics offers a unique avenue for tailoring ground-state material properties, excited-state engineering, and versatile control of quantum matter. Merging these concepts with high-field physics in the terahertz (THz) spectral range opens the door to explore low-energy, field-driven cavity electrodynamics, emerging from fundamental resonances or order parameters. Despite this demand, leveraging the full potential of field-driven material control in cavities is hindered by the lack of direct access to the intra-cavity fields.
View Article and Find Full Text PDFChirp modulation can generate a relatively flat electro-optic frequency comb (EO comb) and offers the advantage of frequency reconfigurability, demonstrating significant potential in high-precision sensing and absorption spectroscopy measurements. However, nonresonant devices such as waveguides are susceptible to limitations in modulation efficiency and bandwidth during electro-optic modulation. In this paper, by utilizing chirp modulation resonance mode, we have realized an EO comb based on a lithium niobate resonator with small tooth spacing and high flatness.
View Article and Find Full Text PDFSecond-harmonic generation (SHG) plays a significant role in modern photonic technology. Integrated photonic resonators fabricated with thin-film lithium niobate can achieve ultrahigh efficiencies by combining small mode volumes with high material nonlinearity. Cavity-enhanced SHG requires accurate phase and frequency matching conditions, where fundamental and second-harmonic wavelengths are both on resonance.
View Article and Find Full Text PDFNano Lett
December 2024
University of Stuttgart, Institute for Functional Matter and Quantum Technologies, Stuttgart 70569, Germany.
Coupling subcycle THz pulses to a scanning tunneling microscope (STM) enables ultrafast spectroscopy at the atomic scale. This technique critically depends on the shape of the THz near-field waveform in the tunnel junction. We characterize the THz electric field waveform in the STM junction by electro-optic sampling of tip-scattered THz light (-EOS) and pulse correlation using the THz-induced current.
View Article and Find Full Text PDFAn approach to generating periodic spiking pulses in a broadband opto-electronic oscillator (OEO) without external injection is proposed and demonstrated. Through biasing the electro-optic Mach-Zehnder modulator (MZM) in the OEO cavity at its nonlinear working point, spiking pulses are excited by the self-generated chaos under the combined action of the loop filter response time and the nonlinear excitation effect. An interaction force is introduced between pulses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!