Bilirubin (BR) is a water-insoluble product of heme catabolism in mammals. Elevated blood concentrations of BR, especially in the neonatal period, are treated with blue-green light phototherapy. The major mechanism of BR elimination during phototherapy is photoisomerization, while a minor, less studied mechanism of degradation is oxidation. In this work, we studied the oxidation of the bilirubin model tetramethyl-dipyrrinone (-) by singlet oxygen in methanol using UV-vis and ESI-MS spectroscopy, resulting in propentdyopents as the main oxidation products. We also identified two additional intermediates that were formed during the reaction (hydroperoxide and imine ). The structure of the hydroperoxide was confirmed by helium-tagging IR spectroscopy. Such reaction intermediates formed during the oxidation of BR or bilirubin models have not been described so far. We believe that this work can be used as a first step in studying the complex oxidation mechanism of BR during phototherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833878PMC
http://dx.doi.org/10.1021/acs.joc.4c02954DOI Listing

Publication Analysis

Top Keywords

singlet oxygen
8
reaction intermediates
8
oxidation bilirubin
8
intermediates formed
8
oxidation
5
photooxidation dipyrrinones
4
reaction
4
dipyrrinones reaction
4
reaction singlet
4
oxygen characterization
4

Similar Publications

In this work, we describe the synthesis of three new -arylporphyrins, named -tetrakis [4-(nicotinoyloxy)phenyl] porphyrin (), -tetrakis [4-(picolinoyloxy)phenyl] porphyrin (), and -tetrakis [4-(isonicotinoyloxy) phenyl] porphyrin (). These new synthesized -arylporphyrins are characterized using spectroscopic analysis: Fourier Transform Infrared Spectroscopy (FTIR) and One-dimensional Nuclear Magnetic Resonance (1D NMR), and mass spectrometry (MS). The photophysical studies (UV-visible absorption, singlet oxygen (O) luminescence, and fluorescence emissions) demonstrate their potential uses as photosensitizers (PSs) in photodynamic therapy (PDT) applications.

View Article and Find Full Text PDF

Concentration-Dependent Photoproduction of Singlet Oxygen by Common Photosensitizers.

Molecules

March 2025

Department of Biophysics, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland.

Singlet oxygen quantum yield (Φ) is a critical parameter in photodynamic studies, particularly for evaluating photosensitizers' efficiency in diverse applications such as photodynamic therapy and environmental remediation. Standard photosensitizers, including Rose Bengal, Methylene Blue, and porphyrins, are widely employed as benchmarks for determining Φ. However, accurate determination of Φ relies not only on the intrinsic properties of these photosensitizers but also on their experimental conditions, such as concentration.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) has been demonstrated to be an effective tool for cancer treatment. Seeking organelle-targeting photosensitizers (PSs) with robust reactive oxygen species (ROS) production is extremely in demand. Herein, we propose an aggregation-induced photosensitization strategy for effective PDT with osmium complexes.

View Article and Find Full Text PDF

Nanozymes possess the advantages of high stability, adjustable catalytic activity and simple preparation processes, which position them as a promising alternative to natural enzymes. In this work, an oxidase-like nanozyme has been prepared by loading mixed valence manganese oxides (MnO) on defective PCN-224 MOFs (dPCN). Dodecanoic acid was utilized to introduce abundant mesoporous defects into the dPCN, allowing manganese oxide to grow in situ on the surface and within the pores.

View Article and Find Full Text PDF

Singlet oxygen (O) is the main active ingredient in photodynamic therapy (PDT). However, an excess O can cause unnecessary toxicity. Therefore, it is of great importance to develop reliable and sensitive methods or probes for detecting O in biological systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!