Insights into myofibrillar protein denaturation during freezing: The impact of ice-water interface area.

Int J Biol Macromol

Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou 450001, PR China. Electronic address:

Published: February 2025

This study investigated the impact of the ice-water interface area on the denaturation of myofibrillar protein (MP) over 1, 3, and 5 freeze-thaw cycles. Experimental systems designed to generate ice-water interfaces with two distinct surface areas were established by employing rapid freezing at -80 °C and slow freezing at -25 °C, resulting in surface areas of 64.63 m/100 mL and 54.05 m/100 mL, respectively. Following three freeze-thaw cycles, the process of rapid freezing, characterized by formation of a larger ice-water interface area, was found to significantly influenced the functional properties of MP. The impact was evidenced by a reduction in solubility, total sulfhydryl content, and thermal denaturation temperature. Structural modifications in MP suggested that the larger ice-water interface led an accelerated rate of protein unfolding during freezing. Interfacial pressure and confocal laser scanning microscopy (CLSM) results demonstrated that the larger ice-water interface area could be more able to reduce protein interfacial adsorption and enhanced protein emulsion aggregation. The addition of 0.1 % surfactant Tween 80 prior to freezing markedly enhanced protein stability throughout both the freezing and subsequent freeze-thaw cycles. The findings suggested that to further inhibit MP frozen denaturation, it is important to consider limiting the expansion of ice-water interface area.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.140672DOI Listing

Publication Analysis

Top Keywords

ice-water interface
24
interface area
20
freeze-thaw cycles
12
larger ice-water
12
myofibrillar protein
8
impact ice-water
8
surface areas
8
rapid freezing
8
enhanced protein
8
freezing
7

Similar Publications

Insights into myofibrillar protein denaturation during freezing: The impact of ice-water interface area.

Int J Biol Macromol

February 2025

Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou 450001, PR China. Electronic address:

This study investigated the impact of the ice-water interface area on the denaturation of myofibrillar protein (MP) over 1, 3, and 5 freeze-thaw cycles. Experimental systems designed to generate ice-water interfaces with two distinct surface areas were established by employing rapid freezing at -80 °C and slow freezing at -25 °C, resulting in surface areas of 64.63 m/100 mL and 54.

View Article and Find Full Text PDF

The film water, with an exceptional capacity to maintain a premelting, liquid-like state even under subzero conditions, provides a potential dynamic conduit for the movement of water in frozen soils. However, the distinctive structural and dynamic characteristics of film water have not been comprehensively elucidated. In this study, molecular dynamics (MD) simulations were conducted to examine the freezing of a system containing ice, water, silica, and gas.

View Article and Find Full Text PDF

In this paper, the first water-to-ice (W2I) wireless optical communication (WOC) system model is proposed and verified by laboratory and field experiments. The Monte Carlo (MC) approach is used to simulate the optical characteristics of ice and water, resulting in the channel impulse response and received optical power (ROP) distribution. The simulation results demonstrate that the substantial absorption and scattering of the ice and ice-water interface significantly affect the cross-medium communication.

View Article and Find Full Text PDF

Reconsidering freeze-induced protein aggregation: Air bubbles as the root cause of ice-water interface stress.

Int J Pharm

November 2024

Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA. Electronic address:

Freeze-induced stress causing aggregation of proteins has typically been primarily attributed to the ice-water interface. However, we hypothesize that the underlying observed and perceived detrimental effect of ice is, to some extent, attributed to air bubbles expelled from ice crystal lattices or to nanobubbles existing prior to freezing. The reduction of dissolved air was achieved via a deaeration process by placing samples in a reduced pressure chamber, while the reduction of nanobubbles was achieved by filtering samples via a syringe filter.

View Article and Find Full Text PDF

Below their ice shells, icy moons may offer a source of chemical energy that could support microbial life in the absence of light. In the Arctic, past and present glacial retreat leads to isostatic uplift of sediments through which cold and methane-saturated groundwater travels. This fluid reaches the surface and freezes as hill-shaped icings during winter, producing dark ice-water interfaces above water ponds containing chemical energy sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!