Chromatin accessibility and transcription levels during oocyte growth are important for oocyte maturation and subsequent development. However, chromatin accessibility changes in porcine oocytes during growth are unclear. The present study demonstrated that porcine oocytes derived from large follicles (LFO) exhibited higher developmental capacity than those derived from small follicles (SFO). Assay for transposase-accessible chromatin using sequencing (ATAC-seq) analysis identified 1117 and 1694 uniquely accessible chromatin peaks in LFO and SFO, respectively. Motif analysis of differential peaks revealed the top 10 significantly enriched transcription factor (TF)-binding motifs in LFO versus SFO, with only one increased peak (Spi1 binding site) and nine decreased peaks (NFYA, ATOH1, ZNF549, Foxn1, HAND2, THRB, NHLH2, FoxP1, and FoxP2 binding sites). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified key processes in the regulation of oocyte growth and maturation. Integration of ATAC-seq and RNA sequencing data revealed the top 10 hub genes involved in chromatin remodeling (MYSM1 and EZH2), histone modification (MYSM1, RNF2, USP1, EZH2, and MIER1), and transcription regulation (MYSM1, ASXL3, and MIER1), as well as those involved in metabolic processes and signal transduction (DOCK7, FGGY, DTL, and DNAJC6). All these genes exhibited increased expression levels in LFO versus SFO. In conclusion, the study demonstrated the dynamic nature of chromatin accessibility during porcine oocyte growth and revealed the TFs and genes closely associated with oocyte growth and maturation. These findings provide new insight into porcine oocyte growth and offer a potential strategy to enhance the in vitro developmental ability of SFO.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rvsc.2025.105565DOI Listing

Publication Analysis

Top Keywords

oocyte growth
20
chromatin accessibility
16
porcine oocytes
12
accessibility porcine
8
study demonstrated
8
analysis identified
8
revealed top
8
lfo versus
8
versus sfo
8
growth maturation
8

Similar Publications

Ovarian Mechanobiology: Understanding the Interplay Between Mechanics and Follicular Development.

Cells

February 2025

NUS Bia-Echo Asia Centre of Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.

The ovary is a dynamic organ where mechanical forces profoundly regulate follicular development, oocyte maturation, and overall reproductive function. These forces, originating from the extracellular matrix (ECM), granulosa and theca cells, and ovarian stroma, influence cellular behavior through mechanotransduction, translating mechanical stimuli into biochemical responses. This review explores the intricate interplay between mechanical cues and ovarian biology, focusing on key mechanosensitive pathways such as Hippo signaling, the PI3K/AKT pathway, and cytoskeletal remodeling, which govern follicular dormancy, activation, and growth.

View Article and Find Full Text PDF

As cells transition between periods of growth and quiescence, their metabolic demands change. During this transition, cells must coordinate changes in mitochondrial function with the induction of biosynthetic processes. Mitochondrial metabolism and nucleotide biosynthesis are key rate-limiting factors in regulating early growth.

View Article and Find Full Text PDF

Inhibition of HDAC4 in granulosa cells improved co-cultured oocyte maturation in vitro independent of LH in porcine.

Development

March 2025

State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.

In domestic animals, the mechanisms by which the luteinizing hormone (LH) surge induces oocyte meiosis resumption and maturation through follicular somatic cells remain unclear. Given the pivotal roles of histone deacetylases (HDACs) in regulating gametogenesis, this study investigated the roles of HDACs in follicular granulosa cells (GCs) in mediating LH action during oocyte maturation in pigs. The results showed that histone deacetylase 4 (HDAC4) levels in cultured GCs increased in a time-dependent manner with follicle-stimulating hormone (FSH) stimulation but significantly decreased with LH treatment.

View Article and Find Full Text PDF

HDAC11 in ovarian granulosa cells coordinates LH in the maturation of oocytes in Tan sheep.

Acta Biochim Biophys Sin (Shanghai)

March 2025

State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.

Oocyte maturation plays an important role in supporting mammalian reproduction. Histone deacetylase 11 (HDAC11), the only member of the class IV histone deacetylase family and the smallest histone deacetylases (HDACs), has been shown to regulate oocyte maturation in mice and pigs. However, the epigenetic effects of HDACs in follicular granulosa cells in response to LH induction remain elusive in sheep.

View Article and Find Full Text PDF

Objective: To assess the efficacy of growth hormone (GH) co-treatment during controlled ovarian stimulation for in-vitro fertilisation (IVF).

Study Design: Descriptive analytical. Place and Duration of the Study: Department of Gynaecology, Etlik Zubeyde Hanim Training and Research Hospital, Ankara, Turkiye, from January 2010 to 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!