The mechanism by which Wnt signaling, an essential pathway controlling development and disease, stabilizes β-catenin has been a subject of debate over the last four decades. Casein kinase 1α (CK1α) functions as a pivotal negative regulator of this signaling pathway, initiating the events that destabilize β-catenin. However, whether and how CK1α activity is regulated in Wnt-off and Wnt-on states remains poorly understood. We now show that CK1α activity requires its association with the α catalytic subunit of protein phosphatase 2A (PPP2CA) on AXIN, the scaffold protein of the β-catenin destruction complex. Wnt stimulation induces the dissociation of PPP2CA from CK1α, resulting in CK1α autophosphorylation and its consequent inactivation. Moreover, autophosphorylated CK1α is enriched in a subset of colorectal cancers (CRCs) harboring constitutive Wnt activation. Our findings identify a mechanism by which Wnt stimulation inactivates CK1α, filling a critical gap in our understanding of Wnt signaling, with relevance for CRC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2025.115274DOI Listing

Publication Analysis

Top Keywords

wnt signaling
12
casein kinase
8
kinase 1α
8
protein phosphatase
8
mechanism wnt
8
ck1α activity
8
wnt stimulation
8
ck1α
7
wnt
6
signaling inhibits
4

Similar Publications

Canonical and non-canonical Wnt signaling pathways are well-characterized regulators of retinal development. Wnt signaling also promotes neuroprotection and regeneration in adult tissues, including retinal ganglion cell (RGC) survival and axonal regrowth after optic nerve injury. However, it is unknown whether Wnt-dependent neuroprotection after injury in the adult CNS is associated with altered expression of developmental genes.

View Article and Find Full Text PDF

Background: Chemoresistance is a critical factor compromising the survival of patients with colorectal cancer (CRC). The "Zhi-Zhen" formula (ZZF), a traditional prescription developed by Chinese national medicine masters, has been extensively used in clinical practice to treat gastrointestinal cancer. Notably, ZZF has the potential to enhance tumor sensitivity to chemotherapy.

View Article and Find Full Text PDF

Purpose: Radioresistance remains a predominant factor contributing to local recurrence in esophageal squamous cell carcinoma (ESCC). SATB2, as a transcriptional co-gene, may affect the radioresistance of cancer cells. Consequently, this study aims to elucidate the mechanism by which SATB2 modulates radiotherapy resistance in esophageal cancer.

View Article and Find Full Text PDF

Prenatal alcohol exposure (PAE) models can cause neurodevelopmental abnormalities like those observed in fetal alcohol spectrum disorder (FASD). Previous studies link experimental PAE effects in the brain to impaired signaling through insulin/IGF and Notch pathways that mediate neuronal survival, growth, migration, energy metabolism, and plasticity. Importantly, concurrent administration of peroxisome proliferator-activated receptor agonists or dietary soy prevented many aspects of FASD due to their insulin-sensitizing, anti-inflammatory, and antioxidant properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!