p16INK4a is a crucial tumor suppressor and regulator of cellular senescence, forming a molecular bridge between aging and cancer. Dysregulated p16INK4a expression is linked to both premature aging and cancer progression, where non-coding RNAs (ncRNAs) such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and small interfering RNAs (siRNAs) play key roles in modulating its function. These ncRNAs interact with p16INK4a through complex post-transcriptional and epigenetic mechanisms, influencing pathways critical to senescence and tumor suppression. In this review, we explore ncRNAs, including ANRIL, MIR31HG, UCA1, MALAT1, miR-24, miR-30, and miR-141, which collectively regulate p16INK4a expression, promoting or inhibiting pathways associated with cancer and aging. ANRIL and MIR31HG modulate p16INK4a silencing via interactions with polycomb repressive complexes (PRC), while miRNAs such as miR-24 and miR-30 target p16INK4a to influence cellular proliferation and senescence. This regulatory interplay underscores the therapeutic potential of ncRNA-targeted strategies to restore p16INK4a function. We summarize recent studies supporting that ncRNAs that control p16INK4a may be diagnostic biomarkers and therapeutic targets for age-related diseases and cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10522-025-10194-2DOI Listing

Publication Analysis

Top Keywords

non-coding rnas
12
aging cancer
12
cellular senescence
8
p16ink4a
8
p16ink4a expression
8
anril mir31hg
8
mir-24 mir-30
8
cancer
5
interplay p16ink4a
4
p16ink4a non-coding
4

Similar Publications

Esophageal adenocarcinoma (EAC) is a highly aggressive malignancy with increasing incidence and poor survival rates, primarily due to late-stage diagnosis. This cancer often develops from Barrett's Esophagus (BE), a precancerous condition linked to chronic gastroesophageal reflux disease (GERD). The transition from BE to EAC is a complex multistep process involving numerous genetic, epigenetic, and molecular changes that lead to the malignant transformation of the esophageal epithelium.

View Article and Find Full Text PDF

Chronic pain is a significant public health concern that diminishes patients' quality of life and imposes considerable socioeconomic costs. Effective pharmacological treatments for ongoing pain are limited. Recent studies have indicated that various models of chronic pain-such as neuropathic pain, inflammatory pain, and pain associated with cancer-have abnormal levels of long noncoding RNAs (lncRNAs).

View Article and Find Full Text PDF

miR-7977 regulates the locomotor behavior by targeting diuretic hormone and SIFamide receptors in Tribolium castaneum.

Int J Biol Macromol

March 2025

Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China; Institute of Plant Health and Medicine, Guizhou University, Guiyang, China. Electronic address:

Insect neuropeptides are crucial for chemical communication, influencing growth, metabolism, and behavior. MicroRNAs (miRNAs), as non-coding RNAs, primarily regulate target gene expression. However, the co-regulation between miRNAs and neuropeptides in modulating locomotor behavior remains poorly understood.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are associated with tumorigenesis and progression. One of these, short nucleolar RNA host gene 14 (SNHG14), has exhibited significant prognostic value due to its aberrant expression across various tumor types. This study investigates the expression patterns, survival outcomes, and tumor stages associated with SNHG14 across various cancers, employing data from the Genotype-Tissue Expression and The Cancer Genome Atlas databases.

View Article and Find Full Text PDF

microRNA-34: A multifunctional miRNA family.

Arch Biochem Biophys

March 2025

Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, PR China. Electronic address:

MicroRNAs are endogenous non-coding small RNAs composed of about 22 nucleotides, which are widely found in eukaryotic cells and regulate gene expression at the post-transcriptional level through complementary pairing with target genes, leading to mRNA degradation or translation inhibition. miR-34 is a highly conserved miRNA during evolution. Recent studies have found that members of the miR-34 family are involved in regulating biological processes such as aging, ciliogenesis, and immunity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!