Ultrafast time-resolved photoelectron spectra are reported for the vacuum-ultraviolet (VUV) photoionization of acetylene following excitation to the Ã1Au state via UV absorption at 200 nm. The excitation energy lies above the lowest dissociation threshold to C2H X̃2Σ+ + H, as well as above the threshold for adiabatic dissociation of the Ã1Au state to form C2H (Ã2Π) + H. The time-dependent mass spectra and photoelectron spectra provide insight into the intramolecular decay processes of the Ã1Au state. In addition, photoelectron spectra of the Ã1Au state with VUV light access both the X̃2Πu and Ã2Σg+ states of the ion, as well as the predicted, but previously unobserved, 1 2Πg state, which corresponds to a two-hole, one-particle configuration that lies in close proximity to the Ã2Σg+ state. The 1 2Πg state is split into 2A2 + 2B2 and 2Ag + 2Bg states in the cis and trans configurations, respectively. Electronic structure calculations, along with trajectory calculations, reproduce the principal features of the experimental data and confirm the assignment of the 1 2Πg state.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0241392DOI Listing

Publication Analysis

Top Keywords

Ã1au state
20
photoelectron spectra
12
2Πg state
12
state
9
Ã1au
5
time-resolved vacuum-ultraviolet
4
photoelectron
4
vacuum-ultraviolet photoelectron
4
photoelectron spectroscopy
4
spectroscopy Ã1au
4

Similar Publications

Purpose: Dephasing gradients can be introduced within a variety of gradient-echo pulse sequences to delineate local susceptibility changes ("White-Marker" phenomenon), e.g., for the visualization of metallic interventional devices which are otherwise difficult to display.

View Article and Find Full Text PDF

BiTe recently emerges as a promising candidate material for the next generation of mid-wave to long-wave infrared photodetection owing to its exceptionally narrow bandgap (approximately 0.2 eV) and the favorable photoelectronic properties. In particular, its topological insulator structure is safeguarded by time-reversal symmetry, leading to electronic structures with distinct surface and bulk states as well as distinctive optoelectronic properties.

View Article and Find Full Text PDF

Denoising complex-valued diffusion MR images using a two-step, nonlocal principal component analysis approach.

Magn Reson Med

March 2025

Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.

Purpose: To propose a two-step, nonlocal principal component analysis (PCA) method and demonstrate its utility for denoising complex diffusion MR images with a few diffusion directions.

Methods: A two-step denoising pipeline was implemented to ensure accurate patch selection even with high noise levels and was coupled with data preprocessing for g-factor normalization and phase stabilization before data denoising with a nonlocal PCA algorithm. At the heart of our proposed pipeline was the use of a data-driven optimal shrinkage algorithm to manipulate the singular values in a way that would optimally estimate the noise-free signal.

View Article and Find Full Text PDF

Mitochondria perform diverse functions, such as producing ATP through oxidative phosphorylation, synthesizing macromolecule precursors, maintaining redox balance, and many others. Given this diversity of functions, we and others have hypothesized that cells maintain specialized subpopulations of mitochondria. To begin addressing this hypothesis, we developed a new dual-purification system to isolate subpopulations of mitochondria for chemical and biochemical analyses.

View Article and Find Full Text PDF

Genome-Wide Association Studies Reveal the Genetic Architecture of Ionomic Variation in Grains of Tartary Buckwheat.

Adv Sci (Weinh)

March 2025

National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utilization Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China.

Tartary buckwheat (Fagopyrum tataricum) is esteemed as a medicinal crop due to its high nutritional and health value. However, the genetic basis for the variations in Tartary buckwheat grain ionome remains inadequately understood. Through genome-wide association studies (GWAS) on grain ionome, 52 genetic loci are identified associated with 10 elements undergoing selection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!