Traditionally employed in alloy corrosion studies, dealloying has evolved into a versatile technique for fabricating advanced porous materials. The unique architecture of interconnected pore channels and continuous metal ligaments endows dealloyed materials with high surface-to-volume ratio, excellent electron conductivity, efficient mass transport and remarkable catalytic activity, positioning them at the forefront of nanomaterial applications with significant potential. However, reproducible synthesis of these structures remains challenging due to limitations in conventional dealloying techniques. Herein, this review attempts to consolidate recent progress in electrochemical and chemical dealloying methods for nanoporous anodes in energy storage and conversion applications. We begin by elucidating the fundamental mechanisms driving dealloying and evaluate key factors influencing dealloying conditions. Through a review of current research, we identify critical properties of dealloyed nanoporous anodes that warrant further investigation. Applications of these materials as anodes in metal-ion batteries, supercapacitors, water splitting and photocatalyst are discussed. Lastly, we address ongoing challenges in this field and propose perspectives on promising research directions. This review aims to inspire new pathways and foster the development of efficient dealloyed porous anodes for sustainable energy technologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792133 | PMC |
http://dx.doi.org/10.1080/14686996.2025.2451017 | DOI Listing |
J Am Chem Soc
March 2025
Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore.
The performance of the electrocatalytic CO reduction reaction (CORR) is highly dependent on the microenvironment around the cathode. Despite efforts to optimize the microenvironment by modifying nanostructured catalysts or microporous gas diffusion electrodes, their inherent disorder presents a significant challenge to understanding how interfacial structure arrangement within the electrode governs the microenvironment for CORR. This knowledge gap limits fundamental understanding of CORR while also hindering efforts to enhance CORR selectivity and activity.
View Article and Find Full Text PDFJ Org Chem
March 2025
Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
Organoselenium compounds and quinolines are widely used in drugs and materials. Herein, we report an electro-oxidative cyclization between isocyanides and diselenides to effectively synthesize 2-organoselenyl quinolines in a simple undivided cell without transition-metal catalysts or toxic oxidants. Gram-scale synthesis and postsynthetic modifications highlighted the practicality of this electrochemical strategy.
View Article and Find Full Text PDFJ Am Chem Soc
March 2025
Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
Electrochemical methodologies offer a transformative approach to sustainable chemical synthesis by enabling precise, energy-efficient transformations. Here, we report the selective electrochemical N-formylation of methylamine using methanol as both reagent and solvent, facilitated by a simple glassy carbon electrode. Under optimized conditions, we achieve a faradaic efficiency (FE) of 34% for methylformamide synthesis in a neutral NaClO electrolyte.
View Article and Find Full Text PDFNanomicro Lett
March 2025
Department of Mechanical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do, 17104, Republic of Korea.
Many natural organisms have evolved unique sensory systems over millions of years that have allowed them to detect various changes in their surrounding environments. Sensory systems feature numerous receptors-such as photoreceptors, mechanoreceptors, and chemoreceptors-that detect various types of external stimuli, including light, pressure, vibration, sound, and chemical substances. These stimuli are converted into electrochemical signals, which are transmitted to the brain to produce the sensations of sight, touch, hearing, taste, and smell.
View Article and Find Full Text PDFBioprocess Biosyst Eng
March 2025
Department of Mechanical Engineering, College of Engineering, Qassim University, 51452, Buraydah, Saudi Arabia.
This study presents the design and performance of microbial fuel cells (MFCs) utilizing sewage water as a renewable source for electricity generation. The proposed MFCs employ an air-cathode, single-chamber configuration that harnesses atmospheric oxygen as the electron acceptor, eliminating the need for consumable electron acceptor chemicals. Unlike traditional systems, no external microorganisms are introduced; instead, indigenous microbial communities present in sewage are utilized as efficient biocatalysts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!