The study investigates the application of white rot fungi for reactor-scale microalgae harvesting and explores the mechanisms underlying the algal-fungal interactions and their impact on biomass composition. Enzymatic analysis and microscopy revealed that the formation of algal-fungal complexes and successful harvesting are coupled with fungal cellulose-degrading enzyme production and hydrolytic processes of microalgae cells. Fluorescence intensity decreased by over 80 % in cells stained with Calcofluor-white after interaction with white rot fungi, indicating the reduction in cellulose content in microalgal cells caused by fungal enzymatic activity. These enzymes also caused significant cell damage and more than 50 % decrease in microalgae cell size. The presence of cellulolytic enzymes broadens the potential application of the resulting biomass in various biotechnological applications. Moreover, reactor-scale bioflocculation resulted in over 95 % and almost 85 % harvesting efficiency from secondary wastewater within less than 24 h, demonstrating the method's scalability and industrial applicability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11791311 | PMC |
http://dx.doi.org/10.1016/j.btre.2025.e00875 | DOI Listing |
ACS Appl Bio Mater
March 2025
Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India.
Multidrug resistance (MDR) infectious wounds are a major concern due to drug resistance, leading to increased patient morbidity. Lichenysin (LCN), a lipopeptide and biosurfactant obtained from certain strains of , has demonstrated an excellent antimicrobial property. The present study focuses on the fabrication and comprehensive evaluation of LCN-incorporated poly(vinyl alcohol) (PVA)/polycaprolactone (PCL)-based nanofiber scaffolds using an electrospinning technique as a potential wound healing biomaterial for the treatment of MDR infectious wounds in diabetic rats.
View Article and Find Full Text PDFPhysiol Plant
January 2025
State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China.
Zinc is an essential trace element for plant growth and development. Zinc transporters play an important role in regulating zinc homeostasis in plants. In this study, the potato cultivar 'Atlantic' was used as experimental material to analyze the expression characteristics of the StZIP2 gene in different potato tissues under zinc deficiency stress.
View Article and Find Full Text PDFJ Ethnopharmacol
March 2025
Fundação Educacional do Município de Assis (FEMA), Assis, São Paulo, Brazil.
FEMS Yeast Res
March 2025
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
Komagataella phaffii has gained recognition as a versatile platform for recombinant protein production, with applications covering biopharmaceuticals, industrial enzymes, food additives, etc. Its advantages include high-level protein expression, moderate post-translational modifications, high-density cultivation, and cost-effective methanol utilization. Nevertheless, it still faces challenges for the improvement of production efficiency and extension of applicability.
View Article and Find Full Text PDFJ Genet Eng Biotechnol
March 2025
Marine Biotechnology and Bioproducts Laboratory, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India. Electronic address:
Marine halotolerant actinobacteria are robust microbes poorly explored and barely cultivable in nature. They are a trove of various secondary metabolites and enzymes, especially the alkaline proteases withstanding higher temperatures, pH, and salinity, making them an ideal source with versatile commercial and therapeutic values. This study focuses on extracting and optimizing alkaline protease production from Streptomyces sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!