The B-cell lymphoma 2 (BCL2) proteins are a class of apoptosis regulators that control the release of apoptogenic factors from mitochondria. Under normal physiological conditions, apoptosis is inhibited through the actions of anti-apoptotic (repressor) BCL2 proteins that bind semi-indiscriminately to the helical BH3 domains of pro-apoptotic (effector) BCL2 proteins. In this work, we developed a series of BH3 domain mimetics by grafting residues from the effector BCL2 protein Bax onto the α-helix of scyllatoxin (ScTx). These so-called "ScTx-Bax" constructs were then used to gain insight into the physicochemical nature of repressor/effector BCL2 interactions. Specifically, we utilized competitive binding and isothermal titration calorimetry (ITC) to investigate the inhibitory potential and binding thermodynamics of ScTx-Bax structural variants that target the repressor protein Bcl-2 (proper) in vitro. Our data show that ScTx-Bax mimetics compete with isolated Bax BH3 domain peptides for Bcl-2 with IC values in the mid-nanomolar range and that greater flexibility within the ScTx-Bax BH3 domain correlates with more effective inhibition. Furthermore, ITC experiments revealed that unstructured ScTx-Bax variants target Bcl-2 with greater entropic, but lower enthalpic, efficiencies than structured ScTx-Bax peptides. These results suggest that entropic contributions to binding Bcl-2 are more favorable for flexible BH3 domains; however, this enhancement is counterbalanced by a moderate enthalpic penalty. Overall, this study improves understanding of how structural properties of effector BH3 domains influence the promiscuous binding patterns of BCL2 proteins and expands the utility of ScTx-based BH3 domain mimetics as molecular tools to study discrete recognition elements that facilitate repressor/effector BCL2 interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794977PMC
http://dx.doi.org/10.1002/jmr.70001DOI Listing

Publication Analysis

Top Keywords

bh3 domain
20
bcl2 proteins
20
domain mimetics
12
bh3 domains
12
inhibitory potential
8
potential binding
8
binding thermodynamics
8
bh3
8
bcl2
8
repressor bcl2
8

Similar Publications

Differences between normal tissues and invading tumors that allow tumor targeting while saving normal tissue are much sought after. Here we show that scarcity of VDAC2, and the consequent lack of Bak recruitment to mitochondria, renders hepatocyte mitochondria resistant to permeabilization by truncated Bid (tBid), a Bcl-2 Homology 3 (BH3)-only, Bcl-2 family protein. Increased VDAC2 and Bak is found in most human liver cancers and mitochondria from tumors and hepatic cancer cell lines exhibit VDAC2- and Bak-dependent tBid sensitivity.

View Article and Find Full Text PDF

Fatty acid synthase (FASN) inhibition cooperates with BH3 mimetic drugs to overcome resistance to mitochondrial apoptosis in pancreatic cancer.

Neoplasia

February 2025

Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Cancer Center, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA. Electronic address:

Resistance to mitochondrial apoptosis is a major driver of chemoresistance in pancreatic ductal adenocarcinoma (PDAC). However, pharmacological manipulation of the mitochondrial apoptosis threshold in PDAC cells remains an unmet therapeutic goal. We hypothesized that fatty acid synthase inhibitors (FASNis), a family of targeted metabolic therapeutics recently entering the clinic, could lower the apoptotic threshold in chemoresistant PDAC cells and be synergistic with BH3 mimetics that neutralize anti-apoptotic proteins.

View Article and Find Full Text PDF

A bacterial effector manipulates host lysosomal protease activity-dependent plasticity in cell death modalities to facilitate infection.

Proc Natl Acad Sci U S A

February 2025

Chinese Academy of Sciences (CAS) Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.

Crosstalk between cell death programs confers appropriate host anti-infection immune responses, but how pathogens co-opt host molecular switches of cell death pathways to reprogram cell death modalities for facilitating infection remains largely unexplored. Here, we identify mammalian cell entry 3C (Mce3C) as a pathogenic cell death regulator secreted by (Mtb), which causes tuberculosis featured with lung inflammation and necrosis. Mce3C binds host cathepsin B (CTSB), a noncaspase protease acting as a lysosome-derived molecular determinant of cell death modalities, to inhibit its protease activity toward BH3-interacting domain death agonist (BID) and receptor-interacting protein kinase 1 (RIPK1), thereby preventing the production of proapoptotic truncated BID (tBID) while maintaining the abundance of pronecroptotic RIPK1.

View Article and Find Full Text PDF

Visceral leishmaniasis, a life-threatening vector-borne illness that disproportionately affects children and elderly immunocompromised people, is a primary tropical neglected disease. No apoptotic partner proteins have yet been reported in Leishmania donovani, while their identification could contribute to knowledge on parasite cell death and the establishment of alternative therapeutics. We searched for mammalian Bcl-2 family protein orthologs and found one anti-apoptotic and two pro-apoptotic orthologs in L.

View Article and Find Full Text PDF

The B-cell lymphoma 2 (BCL2) proteins are a class of apoptosis regulators that control the release of apoptogenic factors from mitochondria. Under normal physiological conditions, apoptosis is inhibited through the actions of anti-apoptotic (repressor) BCL2 proteins that bind semi-indiscriminately to the helical BH3 domains of pro-apoptotic (effector) BCL2 proteins. In this work, we developed a series of BH3 domain mimetics by grafting residues from the effector BCL2 protein Bax onto the α-helix of scyllatoxin (ScTx).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!