A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enzymatic functionalization of bacterial nanocellulose: current approaches and future prospects. | LitMetric

Enzymatic functionalization of bacterial nanocellulose: current approaches and future prospects.

J Nanobiotechnology

Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland.

Published: February 2025

Faced with the challenges of modern industry and medicine associated with the dynamic development of civilization, there is a constantly growing demand for the production of novel functional materials that are clearly oriented towards fulfilling specific applications. Herein, we provide an overview of the current status and recent findings related to the enzymatic functionalization of bacterial nanocellulose. Commonly, biocellulose modification involves the utilization of simple and cost-effective chemical and/or physical approaches. However, these methods may have an adverse effect on both the biological properties of the biomaterial and the natural environment. An alternative to these procedures is the highly specific enzymatic modification of bacterial nanocellulose, which perfectly fits into the assumptions of green technologies, making the process eco-friendly and not limiting any outlooks for further usage of the obtained biocomposites. The employment of enzymes for the targeted alteration of this material's properties is based on either a direct method, such as controlled hydrolysis and nanofication [i.e., synthesis of different morphological forms of bacterial cellulose (e.g., rod-shaped nanocrystals)] using cellulases, and/or attachment of reactive functional groups into the polymer structure via oxidation (e.g., utilizing a laccase/TEMPO catalytic system or lytic polysaccharide monooxygenases) and esterification catalyzed by lipases; or an indirect procedure involving the application of bacterial nanocellulose as a matrix for enzyme immobilization (e.g., laccase, glucose oxidase, horseradish peroxidase, lysozyme, bromelain, lipase, papain), thus creating a specific catalytic system. Overall, enzymatic functionalization of bacterial nanocellulose is a sustainable and promising strategy to create biocomposites with tailored properties for a wide range of industrial and medical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796255PMC
http://dx.doi.org/10.1186/s12951-025-03163-xDOI Listing

Publication Analysis

Top Keywords

bacterial nanocellulose
20
enzymatic functionalization
12
functionalization bacterial
12
catalytic system
8
bacterial
6
nanocellulose
5
enzymatic
4
nanocellulose current
4
current approaches
4
approaches future
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!