The leukocyte integrin LFA1 is indispensable for immune responses, orchestrating lymphocyte trafficking and adhesion. While LFA1 activation induces LFA1 clustering at the cell contact surface via outside-in signaling, the regulatory mechanisms remain unclear. Here, we uncovered a previously hidden function of the autophagosome component LC3 beyond its role in autophagy by bridging two seemingly unrelated pathways: LFA1 transport and autophagosome transport. LFA1 clusters co-trafficked with LC3, facilitating LFA1 accumulation at the contact surface. LC3b knockout decreased lymphocyte adhesiveness. LFA1 activation did not induce autophagy, whereas it increased mTOR and AMPK activity. LFA1-dependent AMPK activation enhances LFA1 and LC3 clustering and adhesion. Inhibiting Mst1 kinase-mediated LC3 phosphorylation promoted LC3-mediated LFA1 recruitment to the contact surface through direct interaction with RAPL, uncovering an unprecedented integrin recruitment route. These findings uncover a function of LC3 and expand our understanding of lymphocyte regulation via LFA1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794545 | PMC |
http://dx.doi.org/10.1038/s41467-025-56631-1 | DOI Listing |
Langmuir
March 2025
Jiangxi Province Key Laboratory of Light Alloy, School of Advanced Manufacturing, Nanchang University, Nanchang 330031, P.R. China.
Herein, a superhydrophobic surface was designed and fabricated based on the "lotus effect" construction mechanism. The zeolitic imidazolate framework (ZIF-90) micro-nanoparticles were initially synthesized via a one-pot method, combined with long-chain stearic acid (STA), and subsequently embedded in polyvinyl butyral (PVB) to form a superhydrophobic surface at room temperature. The superhydrophobic surface demonstrated mechanical stability and retained its superhydrophobicity with a water contact angle (CA) greater than 150°, even at a wear distance of 400 cm.
View Article and Find Full Text PDFJ Immunol
January 2025
Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States.
Poliovirus receptor (PVR) ligands have gained attention as immunotherapy targets, yet their regulation remains unclear. Here, we examine the impact of PVR exposure on primary human CD8+ T cells. We used flow cytometry and Western blot analysis to quantify expression of PVR and its ligands in naïve and effector T cells and used adhesion assays and enzyme-linked immunosorbent assay (ELISA) to assess the impact of PVR on T cell adhesion and cytokine production.
View Article and Find Full Text PDFAnal Chem
March 2025
School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Ji'nan 250012, China.
Sweat, as a metabolic byproduct, encompasses a diverse array of molecular information pertinent to our physiological states and overall health. The extraction of minute quantities of sweat, coupled with sensitive monitoring and identification of its internal molecular components, constitutes an effective strategy for assessing bodily conditions. We engineer a Janus membrane utilizing electrospinning techniques for application on human skin to facilitate sweat collection.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
The primary extraction way for unconventional oil/gas resources is hydraulic fracturing to alter the reservoir for commercial production. However, hydraulic fracturing technology consumes a large amount of water, and the flowback water can easily be mixed with hydrocarbon substances to form emulsions. To achieve the recycling of water, it is necessary to develop an efficient continuous demulsification method for treating the flowback fluid.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
March 2025
Research Institute of Chemistry, Peoples' Friendship University of Russia, Miklukho-Maklaya St., 6, Moscow 117198, Russian Federation.
The title compound, CHNSSe·Cl, produced by the reaction between 3,4-di-cyano-thio-phene and 2-pyridyl-selenyl chloride was isolated as a salt that crystallizes in the triclinic space group 1. Notable features include strong chalcogen inter-actions (Se⋯Cl and Se⋯S), as revealed through Hirshfeld surface analysis, which also highlights significant contributions from N⋯H/H⋯N, C⋯H/H⋯C and H⋯H contacts in the crystal packing. Supra-molecular inter-actions were further analysed using density functional theory (DFT) and quantum theory of atoms in mol-ecules (QTAIM) at the ωB97XD/6-311++G** level of theory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!