To explore the neurobiological heterogeneity within the Clinical High-Risk (CHR) for psychosis population, this study aimed to identify and characterize distinct neurobiological biotypes within CHR using features from resting-state functional networks. A total of 239 participants from the Shanghai At Risk for Psychosis (SHARP) program were enrolled, consisting of 151 CHR individuals and 88 matched healthy controls (HCs). Functional connectivity (FC) features that were correlated with symptom severity were subjected to the single-cell interpretation through multikernel learning (SIMLR) algorithm in order to identify latent homogeneous subgroups. The cognitive function, clinical symptoms, FC patterns, and correlation with neurotransmitter systems of biotype profiles were compared. Three distinct CHR biotypes were identified based on 646 significant ROI-ROI connectivity features, comprising 29.8%, 19.2%, and 51.0% of the CHR sample, respectively. Despite the absence of overall FC differences between CHR and HC groups, each CHR biotype demonstrated unique FC abnormalities. Biotype 1 displayed augmented somatomotor connection, Biotype 2 shown compromised working memory with heightened subcortical and network-specific connectivity, and Biotype 3, characterized by significant negative symptoms, revealed extensive connectivity reductions along with increased limbic-subcortical connectivity. The neurotransmitter correlates differed across biotypes. Biotype 2 revealed an inverse trend to Biotype 3, as increased neurotransmitter concentrations improved functional connectivity in Biotype 2 but reduced it in Biotype 3. The identification of CHR biotypes provides compelling evidence for the early manifestation of heterogeneity within the psychosis spectrum, suggesting that distinct pathophysiological mechanisms may underlie these subgroups.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794858 | PMC |
http://dx.doi.org/10.1038/s41537-025-00565-6 | DOI Listing |
J Genet Eng Biotechnol
March 2025
Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh; Department of Molecular Biology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh. Electronic address:
One of the largest and most significant transcription factor gene families in plants is the SQUAMOSA promoter binding protein (SBP) gene family and they perform critical regulatory roles in floral enhancement, fruit development, and stress resistance. The SBP protein family (also known as SPL) has not yet been thoroughly studied in the staple fruit crop, banana. A perennial monocot plant, banana is essential for ensuring food and nutrition security.
View Article and Find Full Text PDFHandb Clin Neurol
March 2025
Donders Institute for Brain Cognition Behaviour, Radboud University, Nijmegen, The Netherlands; Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
Brain tumors are classified as rare diseases, with an annual occurrence of 300,000 cases and account for an annual loss of 241,000 lives, highlighting their devastating nature. Recent advancements in diagnosis and treatment have significantly improved the management and care of brain tumors. This chapter provides an overview of the common types of primary brain tumors affecting language functions-gliomas and meningiomas.
View Article and Find Full Text PDFHandb Clin Neurol
March 2025
Donders Institute for Brain Cognition Behaviour, Radboud University, Nijmegen, The Netherlands; Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands. Electronic address:
The human brain is an intricate network of cortical regions interconnected by white matter pathways, dynamically supporting cognitive functions. While cortical asymmetries have been consistently reported, the asymmetry of white matter connections remains less explored. This chapter provides a brief overview of asymmetries observed at the cortical, subcortical, cytoarchitectural, and receptor levels before exploring the detailed connectional anatomy of the human brain.
View Article and Find Full Text PDFHandb Clin Neurol
March 2025
University School for Advanced Studies (IUSS-Pavia), Pavia, Italy; Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy. Electronic address:
Hemispheric asymmetry in pathologic involvement is frequently observed in neurodegenerative disorders (NDD) and is responsible for differences in cognitive and motor clinical manifestations in individual patients. While asymmetry is modest in typical Alzheimer disease (AD), atypical AD presentations with prominent language impairment [logopenic/phonologic variant of primary progressive aphasia (L/Phv-PPA)] are associated with prevalent involvement of the language-dominant hemisphere. Similarly, in the frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) spectrum, the semantic (Sv) and nonfluent/agrammatic (Nf/Av) variants of PPA are due to asymmetric pathology involving the language-dominant hemisphere.
View Article and Find Full Text PDFJ Oral Sci
March 2025
Department of Prosthodontics & Oral Rehabilitation, Graduate School of Biomedical Sciences, Tokushima University.
Purpose: The purpose of this study was to investigate swallowing function of older adults with lowered hyoid bone position.
Methods: A total of 60 older adults (23 males and 37 females, mean age: 70.1 years) with no diagnosed dysphagia participated in the study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!