Cloning, expression, and characterization of collagen galactosyltransferases from human, sponge, and sea walnut.

Protein Expr Purif

Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY, USA. Electronic address:

Published: May 2025

Collagen is an extracellular matrix protein conserved across animals and viruses, with its function regulated by post-translational modifications of lysine residues. Specifically, certain lysine residues in collagen are hydroxylated to form hydroxylysine, which serves as an attachment site for hydroxylysine-linked glycosylation. This glycosylation process is initiated by collagen galactosyltransferases from the GT25 family, also known as GLT25D or COLGALT proteins. Despite their biological importance, efficient methods for expressing and isolating GLT25Ds have yet to be fully developed, and the biochemical mechanisms underlying their function still need to be better understood. To address this, we performed sequence alignment and phylogenetic analyses of GLT25Ds across vertebrates, invertebrates, and viruses. Using sponge (amphimedon queenslandica) GLT25D as a model, we established a bacterial expression, purification, and assay protocol. Sponge GLT25D expressed robustly in E. coli strain BL21 and demonstrated enzymatic activity comparable to human GLT25D1 from mammalian cells. Kinetic parameters and the effects of time, temperature and pH on enzymatic activity were characterized for both enzymes. AlphaFold structural modeling and sequence alignment revealed an EXD motif and a conserved leucine in a pocket of the second Rossmann-fold domain of sponge GLT25D, suggesting this pocket as the active site. Using the standardized bacterial expression, purification, and assay protocol, we screened GLT25Ds from various vertebrate and invertebrate species. Notably, the sea walnut (mnemiopsis leidyi) GLT25D exhibited superior expression levels and robust enzymatic activity. This established method provides a strong foundation for future bioengineering efforts, structure-function analyses, and the development of GLT25D inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pep.2025.106685DOI Listing

Publication Analysis

Top Keywords

enzymatic activity
12
collagen galactosyltransferases
8
sea walnut
8
lysine residues
8
sequence alignment
8
bacterial expression
8
expression purification
8
purification assay
8
assay protocol
8
sponge glt25d
8

Similar Publications

It is known that inhibition of the endoplasmic reticulum transmembrane signaling protein (ERN1) suppresses the glioblastoma cells proliferation. The present study aims to investigate the impact of inhibition of ERN1 endoribonuclease and protein kinase activities on the , , and gene expression in U87MG glioblastoma cells with an intent to reveal the role of ERN1 signaling in the regulation of expression of these genes. The U87MG glioblastoma cells with inhibited ERN1 endoribonuclease (dnrERN1) or both enzymatic activities of ERN1 (endoribonuclease and protein kinase; dnERN1) were used.

View Article and Find Full Text PDF

Traditional biological detection methods rely on signal amplification strategies such as enzymatic catalysis or nucleic acid amplification. However, their efficiency decreases in low-temperature environments, compromising their detection sensitivity. To break the loss of enzyme catalytic activity at low temperatures, research on cold-adaptive nanozymes has attracted much attention.

View Article and Find Full Text PDF

FAP-catalyzed in situ self-assembly of magnetic resonance imaging probe for early and precise staging of liver fibrosis.

Sci Adv

March 2025

Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200065, China.

Liver fibrosis is an inevitable stage in the progression of most chronic liver diseases. Early diagnosis and treatment of liver fibrosis are crucial for effectively managing chronic liver conditions. However, there lacks a noninvasive and sensitive imaging method capable of early assessing fibrosis activity.

View Article and Find Full Text PDF

Na,K-ATPase is an electrogenic pump found in cell plasma membranes that acts as the basic unit of animal life. This enzyme is highly susceptible to cardiotonic steroid (CTS) inhibition. The role of Na,K-ATPase in signaling has introduced a novel viewpoint regarding the enzyme's function, as the ouabain-binding site is involved in several physiological processes.

View Article and Find Full Text PDF

Molecular Insights into the Rhamnolipid-Promoted Enzymatic Performance on Removing Phenolic Pollutants.

Langmuir

March 2025

Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.

Horseradish peroxidase (HRP) is a metalloenzyme widely used in various biochemical applications but is susceptible to activity loss and instability under suboptimal conditions. In this study, rhamnolipid (RL) was, for the first time, employed as an additive to enhance the catalytic performance of HRP, including in a dual-enzyme cascade system with glucose oxidase (GOx). We carried out catalytic experiments on phenol degradation and showed that protecting HRP from deactivation is critical in maintaining the high catalytic effect in the dual-enzyme cascade.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!