A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The neuroethology of ant navigation. | LitMetric

The neuroethology of ant navigation.

Curr Biol

Lund University, Department of Biology, Lund Vision Group, Lund, Sweden.

Published: February 2025

Unlike any other group of animals, all ant species are social: individual ants share the food they gather with their nestmates and as a consequence they must repeatedly leave their nest to find food and then return home with it. These back-and-forth foraging trips have been studied for about a century and much of our growing understanding of the strategies underlying animal navigation has come from these studies. One important strategy that ants use to keep track of where they are on a foraging trip is 'path integration', in which they continuously update a 'home vector' that gives their estimated distance and direction from the nest. As path integration accumulates errors, it cannot be relied on to bring ants precisely home: such precision is accomplished by using views of the nest acquired before they start foraging. Further learning is scaffolded by home vectors or remembered food vectors, which guide a route and help in learning useful views experienced on the way. Many species rely on olfaction as well as vision for route guidance and the full details of their foraging paths have revealed how ants use a mix of innate and learnt multisensory cues. Wood ants, a species on which we focus in this review, take an oscillating path along a pheromone trail to sample odours, but acquire visual information only at the peaks and troughs of the oscillations. To provide a working model of the neural basis of the multimodal navigational strategies of ants, we outline the anatomy and functioning of major central brain areas and neural circuits - the central complex, mushroom bodies and lateral accessory lobes - that are involved in the coordination of navigational behaviour and the learning of visual and olfactory patterns. Because ant brains have not yet been well-studied, we rely on the work that has been done with other species - notably, Drosophila, silkworm moths and bees - to derive plausible neural circuitry that can deliver the ants' navigational strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2024.12.034DOI Listing

Publication Analysis

Top Keywords

navigational strategies
8
ants
6
neuroethology ant
4
ant navigation
4
navigation group
4
group animals
4
animals ant
4
species
4
ant species
4
species social
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!