A peptide-based fluorescent bioprobe for EphA2-overexpressing tumor targeting and image-guided surgical resection.

Bioorg Med Chem

Zhejiang Yike Biotech. Co., Ltd, Yiwu, Zhejiang Province, China. Electronic address:

Published: April 2025

Fluorescence-guided surgery (FGS) is an emerging and highly promising surgical technique in clinic. Owing to its real-time and visual characteristics, it assists in achieving clear pictures on lesion site, tumor boundary and degree of metastasis, which will definitely improve surgery accuracy and minimize cancer recurrence as much as possible. Herein, we report a near-infrared fluorescent bioprobe, YK80, which utilizes a modified heptamethine cyanine dye as the fluorophore and a self-assembling peptide targeting Ephrin receptor A2 (EphA2) proteins as the ligand. The design strategy and the synthetic route to YK80 are described, and then optical properties, pharmacokinetics, binding affinity between YK80 and the protein are further investigated. YK80 shows high affinity (K ≈ 100 nM) with EphA2-expressing cancer cells and excellent targeting ability in mouse models bearing colorectal tumors. Meanwhile, indocyanine green (ICG), the commonly used non-targeted fluorescent contrast agent is employed as the comparison for in vivo experiments. However, ICG owns no such capability towards cancer cells or solid tumors. Thus, YK80 could potentially serve as a targeted contrast agent for image-guided surgery and this successful example will boost the development of medical imaging, surgical methods as well as translational medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2025.118090DOI Listing

Publication Analysis

Top Keywords

fluorescent bioprobe
8
cancer cells
8
contrast agent
8
yk80
5
peptide-based fluorescent
4
bioprobe epha2-overexpressing
4
epha2-overexpressing tumor
4
tumor targeting
4
targeting image-guided
4
image-guided surgical
4

Similar Publications

Ovarian cancer survival depends strongly on the time of diagnosis. Detection at stage 1 must be the goal of liquid biopsies for ovarian cancer detection. We report the development and validation of graphene-based optical nanobiosensors (G-NBSs) that quantify the activities of a panel of proteases, which were selected to provide a crowd response that is specific for ovarian cancer.

View Article and Find Full Text PDF

A screening system to determine the effect of bacterial metabolites on MAdCAM-1 expression by transformed endothelial sinusoidal cells.

Methods Cell Biol

March 2025

Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France. Electronic address:

Mucosal addressin cell adhesion molecule 1 (MAdCAM-1) expression in high endothelial venules is regulated by bacterial metabolites emanating from the gut and the interaction of MAdCAM-1 with α4β7 integrin mediates lymphocyte diapedesis into gut-associated secondary lymphoid tissues. MAdCAM-1 thus controls the abundance of circulating immunosuppressive T cells that can reach malignant tissue and compromise the therapeutic efficacy of anticancer immunotherapy. Here we describe a biosensor-based phenotypic assessment that facilitates the high throughput screening (HTS)-compatible assessment of MAdCAM-1 regulation in response to exposure to bacterial metabolites.

View Article and Find Full Text PDF

An upconversion-gold nanoparticle detection system that integrates PCR amplification and fluorescence resonance energy transfer was constructed to enable swift and highly sensitive identification of Escherichia coli. The forward primer used in the PCR amplification is modified with sulfhydryl groups, enabling its connection to gold nanoparticles via Au-S bonds. The complementary strand of the forward primer, which is attached to the upconversion nanomaterials, can hybridize with the free forward primer through base complementary pairing.

View Article and Find Full Text PDF

A fluorescent detection platform was designed using boric acid-functionalized terbium metal-organic framework (BA-Tb-MOF) and carboxyl-modified magnetic nanoparticles (MNPs) to identify Salmonella typhimurium (S. typhimurium) bacteria. Firstly, carboxyl-modified FeOMNPs were coated with specific aptamer (Apt-MNPs) as the capture probe for S.

View Article and Find Full Text PDF

Genetically encoded biosensors can measure biochemical properties such as small-molecule concentrations with single-cell resolution, even in vivo. Despite their utility, these sensors are "black boxes": Very little is known about the structures of their low- and high-fluorescence states or what features are required to transition between them. We used LiLac, a lactate biosensor with a quantitative fluorescence-lifetime readout, as a model system to address these questions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!