Background: Gastric cancer (GC) remains a significant global health burden, particularly in East Asia, where it is a leading cause of cancer-related morbidity and mortality. Despite advancements in chemotherapy, the development of chemoresistance continues to undermine the efficacy of standard treatments such as Docetaxel and Oxaliplatin. Arsenic trioxide (ATO) has emerged as a potential therapeutic agent capable of overcoming resistance by targeting DNA repair mechanisms, particularly through the downregulation of Checkpoint Kinase 1 (Chk1). This study investigates the cytotoxic effects of ATO and its capacity to enhance chemotherapy efficacy in GC cells.

Methods: AGS and MKN-45 gastric cancer cell lines were exposed to ATO, Docetaxel, Oxaliplatin, and their combinations. Cell viability was assessed via the MTT assay, while Chk1 and CDC25 expressions at the mRNA and protein levels was analyzed using real-time PCR and Western blotting. Statistical analyses were performed using ANOVA and Tukey's post hoc test.

Results: The MTT assay revealed significant dose- and time-dependent reductions in cell viability, with combination treatments achieving the most pronounced effects. The greatest cytotoxicity was observed with 4 µM ATO combined with 2500 µM Docetaxel or 100 µM Oxaliplatin, showing a high level of statistical significance (p < 0.0001). Additionally, ATO monotherapy significantly downregulated Chk1 and CDC25 expressions (p < 0.05), while its combination with chemotherapeutic agents further enhanced Chk1 and CDC25 suppressions, with ATO-Docetaxel demonstrating the most pronounced effect (p < 0.01).

Conclusions: These findings highlight ATO's potential to sensitize GC cells to chemotherapy by impairing DNA repair mechanisms and inducing synergistic cytotoxicity. ATO holds promise as an adjuvant therapeutic agent for overcoming chemoresistance in gastric cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-025-10313-9DOI Listing

Publication Analysis

Top Keywords

gastric cancer
12
arsenic trioxide
8
chk1 cdc25
8
potential therapeutic
8
docetaxel oxaliplatin
8
cell viability
8
mtt assay
8
comparative effects
4
effects arsenic
4
trioxide chemotherapy
4

Similar Publications

Novel treatment options are needed for the gastric pathogen due to its increasing antibiotic resistance. The vitamin K analogue menadione has been extensively studied due to interest in its anti-bacterial and anti-cancer properties. Here, we investigated the effects of menadione on growth, viability, antibiotic resistance, motility and gene expression using clinical isolates.

View Article and Find Full Text PDF

Small interfering RNA (siRNA) has garnered tremendous interest as a potential therapeutic tool because of its intriguing gene-silencing ability. Toward the success in the manufacture of siRNA therapeutics for the potential treatment of choroidal neovascularization (CNV), siRNA conjugated with dual functional units of membrane-penetrating heptafluoropropyl and age-related macular degeneration-targeting cyclic Arg-Gly-Asp (RGD) peptide was attempted for transcellular transportation into the cell interiors. Of note, cyclic RGD allowed selective affinities toward the angiogenic endothelial cells in the pathological CNV.

View Article and Find Full Text PDF

Purpose: Gastric cancer patients often experience significant fear of recurrence, impacting their physical and mental health. This study explores how time perspective influences fear of cancer recurrence, considering the roles of intrusive rumination and catastrophizing.

Methods: A cross-sectional design was employed with 394 gastric cancer patients.

View Article and Find Full Text PDF

MAZ-mediated LAMA5 transcription activation promotes gastric cancer progression through the STAT3 signaling.

Funct Integr Genomics

March 2025

Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Huaiyin District, Jinan, Shandong, 250021, P.R. China.

Laminin subunit alpha-5 (LAMA5) has been identified as an oncogene in many cancers, while its role and mechanism in gastric cancer (GC) remain to be explored. Here, the influences of LAMA5 knockdown on GC were investigated in vitro and in vivo. LAMA5 expression was silenced in GC cells alone or in combination with the signal transducer and activator of transcription 3 (STAT3) activator Colivelin, followed by CCK-8, colony formation, EdU, flow cytometry, wound healing assay, and Transwell assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!