We investigate the convergence of quasiparticle energies for periodic systems to the thermodynamic limit using increasingly large simulation cells corresponding to increasingly dense integration meshes in reciprocal space. The quasiparticle energies are computed at the level of equation-of-motion coupled-cluster theory for ionization (IP-EOM-CC) and electron attachment processes (EA-EOM-CC). By introducing an electronic correlation structure factor, the expected asymptotic convergence rates for systems with different dimensionality are formally derived. We rigorously test these derivations through numerical simulations for -polyacetylene using IP/EA-EOM-CCSD and the @HF approximation, which confirm the predicted convergence behavior. Our findings provide a solid foundation for efficient schemes to correct finite-size errors in IP/EA-EOM-CCSD calculations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11866753PMC
http://dx.doi.org/10.1021/acs.jctc.4c01451DOI Listing

Publication Analysis

Top Keywords

thermodynamic limit
8
quasiparticle energies
8
finite-size effects
4
effects periodic
4
periodic eom-ccsd
4
eom-ccsd ionization
4
ionization energies
4
energies electron
4
electron affinities
4
convergence
4

Similar Publications

Spectrofluorimetric determination of bupropion using N,S co-doped carbon quantum dots: Mechanistic investigation, response surface optimization, and application to pharmaceutical formulations, spiked plasma and environmental samples.

Spectrochim Acta A Mol Biomol Spectrosc

March 2025

Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia. Electronic address:

In this study, a novel analytical method was developed for the determination of bupropion in pharmaceutical formulations and spiked plasma samples using N, S co-doped carbon quantum dots (N,S CQDs) as a fluorescent probe. The N,S CQDs were thoroughly characterized and its optical properties were investigated. The developed N,S CQDs exhibited blue emission at 435 nm upon excitation at 357 nm.

View Article and Find Full Text PDF

Study on the failure of oil-contaminated wheel-rail conditions.

PLoS One

March 2025

Engineering Research Center of Continuous Extrusion, Ministry of Education, Dalian Jiaotong University, Dalian, China.

The phenomenon of adhesion improvement during wheel-rail sliding has been experimentally verified under water conditions. However, the academic community is in agreement that, for oil that is also fluid, the adhesion characteristic curve under oil conditions exhibits a single peak, making adhesion improvement through wheel-rail sliding impossible. To investigate whether a similar adhesion improvement phenomenon exists under high-viscosity oil medium conditions as observed under water condition, this study conducted wheel-rail adhesion tests on oil-contaminated interfaces within a slip ratio up to 80%.

View Article and Find Full Text PDF

Hydrogen storage as hydrates is one of the most environmentally benign approaches to store hydrogen as it requires only water and traces of promoters. However, the scalability of storing hydrogen hydrate formation is hindered by the limited understanding of the structure, dynamics and energetics of hydrogen and promoters in the hydrate cages. In this study, molecular dynamics simulation configurations with different occupancy modes of H and tetrahydrofuran (THF) in the hydrate cages are investigated under the following scenarios: (i) two H molecules occupying the small cages, (ii) occupancy of H molecules in the THF-free large cages, and (iii) co-occupancy of H and THF in one large cage.

View Article and Find Full Text PDF

Co-crystal engineering is of interest for many applications in pharmaceutical, chemistry and material fields, but rational design of co-crystals is still challenging. Although artificial intelligence has brought major changes in the decision-making process for materials design, yet limitations in generalization and mechanistic understanding remain. Herein, we sought to improve prediction of co-crystal by combining mechanistic thermodynamic modeling with machine learning.

View Article and Find Full Text PDF

: Selective cryolipolysis is a widely used aesthetic procedure that cools subcutaneous adipose tissue to temperatures as low as to induce fat cell destruction. However, real-time monitoring techniques are lacking, limiting the ability to optimize safety and efficacy. Traditional imaging methods either fail to provide adequate penetration depth or lack the resolution necessary for visualizing subcutaneous fatty tissue dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!