Rationale: Alcohol is one of the most frequently used drugs of abuse and has a major impact on human health worldwide. People assigned female at birth and those with adverse childhood experiences are stress-vulnerable and more likely to report drinking as a means of "self-medication." Prior studies in our laboratory showed that adolescent social isolation stress (SIS) increases vulnerability to ethanol (EtOH) intake and consumption despite negative consequences in female rats.

Objectives: Here, we explored modulation of the dorsal raphe nucleus (DRN)-serotonin (5-HT) system, a sexually dimorphic neurotransmitter system involved in stress-reward interactions, to determine its contribution to EtOH-motivated behaviors in rats that have undergone SIS.

Results: We employed electrophysiological and functional neuroanatomy strategies to show that both SIS and EtOH exposure induce persistent hypofunction of the DRN 5-HT system, particularly in females. Chemogenetic activation of DRN 5-HT neurons attenuated reward value for both EtOH and sucrose and elevated punished responding for EtOH in a stress-dependent manner.

Conclusions: Our results highlight an inverse relationship between EtOH consumption and the 5-HT system, the sex- and stress-dependent nature of this relationship, and a connection between DRN 5-HT signaling and acute responding to rewards and punishment. These data support the DRN 5-HT system as a potential target to treat aberrant alcohol consumption and drinking despite negative consequences in stress-vulnerable populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11890253PMC
http://dx.doi.org/10.1007/s00213-025-06749-3DOI Listing

Publication Analysis

Top Keywords

5-ht system
16
drn 5-ht
16
adolescent social
8
social isolation
8
isolation stress
8
despite negative
8
negative consequences
8
system
6
5-ht
6
etoh
5

Similar Publications

The study explores the vital role of gut microbiota in regulating neurotransmitters and its subsequent effects on brain function and mental health. It aims to unravel the mechanisms by which microbial metabolites influence neurotransmitter synthesis and signaling. The ultimate goal is to identify potential therapeutic strategies targeting gut microbiota for the management and treatment of neurological disorders, such as depression, autism spectrum disorder (ASD), anxiety, and Parkinson's disease.

View Article and Find Full Text PDF

The crisis of metabolic and mental disorders continues to escalate worldwide. A growing body of research highlights the influence of tryptophan and its metabolites, such as serotonin, beyond their traditional roles in neural signaling. Serotonin acts as a key neurotransmitter within the brain-gut-microbiome axis, a critical bidirectional communication network affecting both metabolism and behavior.

View Article and Find Full Text PDF

Background: Atherosclerosis is characterized by the accumulation of fatty and fibrotic plaques, which preferentially develop at curvatures and branches along the arterial trees that are exposed to disturbed flow. However, the mechanisms by which endothelial cells sense disturbed flow are still unclear.

Methods: The partial carotid ligation mouse model was used to investigate disturbed flow-induced atherogenesis.

View Article and Find Full Text PDF

Major depressive disorder on a neuromorphic continuum.

Nat Commun

March 2025

The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China.

The heterogeneity of major depressive disorder (MDD) has hindered clinical translation and neuromarker identification. Biotyping facilitates solving the problems of heterogeneity, by dissecting MDD patients into discrete subgroups. However, interindividual variations suggest that depression may be conceptualized as a "continuum," rather than as a "category.

View Article and Find Full Text PDF

Molecular basis for the effects of SSRIs in non-target aquatic invertebrates: A case study with Mytilus galloprovincialis early larvae.

Aquat Toxicol

March 2025

Department of Earth, Environmental and Life Sciences (DISTAV), University of Genova, Italy, Corso Europa 26, 16132 Genova, Italy; National Biodiversity Future Centre, 90133, Palermo, Italy. Electronic address:

Selective Serotonin Reuptake Inhibitors (SSRIs) are among the most prescribed antidepressants, whose increasing consumption results in a continuous discharge into aquatic compartments, where they are detected at ng-µg/L levels. Whilst designed to modulate endogenous levels of circulating Serotonin (5-HT) in humans by selectively interfering with serotonin reuptake transporters (SERTs), SSRIs have been shown to induce a variety of adverse effects in non-target species, including aquatic invertebrates. In bivalve molluscs, adult exposure to environmental concentrations of SSRIs results in tissue bioaccumulation and induces different biomarker responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!