The Rev-dependent nuclear export of unspliced and singly-spliced transcripts of human immunodeficiency virus type 1 (HIV-1) constitutes a critical yet poorly characterized post-transcriptional event essential for effective viral replication. In this study, we engineered a dual-fluorescent HIV-1-based cellular reporter system to elucidate the mechanisms underpinning Rev-dependent export. By generating multiple stably integrated inducible cellular clones, we ensured the expression of two distinct fluorescent proteins, mKO2, and ECFP, from unspliced (Rev dependent) and multiply spliced (Rev independent) HIV-1 transcripts, respectively. Utilizing flow cytometry, we performed quantitative analyses of dual-fluorescent cell populations. The developed tool enables precise assessment of the Rev-dependent export, and we validated it using known inhibitors of this pathway (leptomycin D), as well as targeted depletion of MATR3, an essential cofactor of Rev, and CRNKL1, a repressor of unspliced HIV-1 RNA export.IMPORTANCEThe developed dual-fluorescent reporter system represents a powerful and handy tool for the identification and characterization of novel molecular players involved in the Rev-dependent export pathway. This system not only holds promise for advancing our understanding of human immunodeficiency virus type 1 (HIV-1) biology but also serves as an invaluable platform for high-throughput drug screening aimed at targeting post-transcriptional HIV-1 RNA processes, particularly nuclear export. Consequently, this study offers significant implications for the development of novel therapeutic strategies to eradicate the virus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878058 | PMC |
http://dx.doi.org/10.1128/spectrum.01903-24 | DOI Listing |
Microbiol Spectr
March 2025
Laboratory of Molecular Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
The Rev-dependent nuclear export of unspliced and singly-spliced transcripts of human immunodeficiency virus type 1 (HIV-1) constitutes a critical yet poorly characterized post-transcriptional event essential for effective viral replication. In this study, we engineered a dual-fluorescent HIV-1-based cellular reporter system to elucidate the mechanisms underpinning Rev-dependent export. By generating multiple stably integrated inducible cellular clones, we ensured the expression of two distinct fluorescent proteins, mKO2, and ECFP, from unspliced (Rev dependent) and multiply spliced (Rev independent) HIV-1 transcripts, respectively.
View Article and Find Full Text PDFJ Virol
September 2022
State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China.
All lentiviruses encode the accessory protein Rev, whose main biological function is to mediate the nuclear export of unspliced and incompletely spliced viral transcripts by binding to a viral cis-acting element (termed the Rev-responsive element, RRE) within the env-encoding region. Equine infectious anemia virus (EIAV) is a member of the lentivirus genus in the Retroviridae family and is considered an important model for the study of lentivirus pathogenesis. Here, we identified a novel transcript from the EIAV genome that encoded a viral protein, named Mat, with an unknown function.
View Article and Find Full Text PDFFEBS J
November 2022
Department of Biochemistry, School of Life Sciences, University of Hyderabad, India.
Nucleocytoplasmic shuttling of viral elements, supported by several host factors, is essential for the replication of the human immunodeficiency virus (HIV). HIV-1 uses a nuclear RNA export pathway mediated by viral protein Rev to transport its Rev response element (RRE)-containing partially spliced and unspliced transcripts aided by the host nuclear RNA export protein CRM1. The factor(s) interacting with the CRM1-Rev complex are potential antiretroviral target(s) and could serve as a retroviral model system to study nuclear export machinery adapted by these viruses.
View Article and Find Full Text PDFViruses
April 2022
McArdle Laboratory for Cancer Research (Department of Oncology), Institute for Molecular Virology, and Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
Single-cell imaging has emerged as a powerful means to study viral replication dynamics and identify sites of virus−host interactions. Multivariate aspects of viral replication cycles yield challenges inherent to handling large, complex imaging datasets. Herein, we describe the design and implementation of an automated, imaging-based strategy, “Human Immunodeficiency Virus Red-Green-Blue” (HIV RGB), for deriving comprehensive single-cell measurements of HIV-1 unspliced (US) RNA nuclear export, translation, and bulk changes to viral RNA and protein (HIV-1 Rev and Gag) subcellular distribution over time.
View Article and Find Full Text PDFJ Biol Chem
October 2019
State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
The nuclear export receptor CRM1 is an important regulator involved in the shuttling of various cellular and viral RNAs between the nucleus and the cytoplasm. HIV-1 Rev interacts with CRM1 in the late phase of HIV-1 replication to promote nuclear export of unspliced and single spliced HIV-1 transcripts. However, other cellular factors involved in the CRM1-dependent viral RNA nuclear export remain largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!