This study introduces a computational protocol for modeling the emission spectra of exciplexes using excited-state ab initio molecular dynamics (AIMD) simulations. The protocol is applied to a model exciplex formed by oligo-p-phenylenes (OPPs) and triethylamine (TEA), which is of interest in the context of photocatalytic reduction of . AIMD facilitates efficient sampling of the conformational space of OPP3 and OPP4 exciplexes with TEA, offering a dynamic alternative to previously employed static methods. The AIMD-based protocol successfully reproduces experimental emission spectra for OPP-TEA exciplexes, agreeing with previous computational and experimental findings. The results show that AIMD simulations provide an efficient means of sampling the conformational space of these exciplexes, requiring less user input and, in some instances, fewer computational resources than multiple excited-state optimizations initiated from user-specified initial structures. The study also evaluates the yield of intersystem crossing (ISC) using AIMD and Landau-Zener probability. The results suggest that ISC is a minor decay channel for OPP3 and OPP4. This work provides new insights into the structural flexibility and emission characteristics of OPP-TEA photoredox catalyst systems, potentially contributing to improved design strategies for organic chromophores in reduction applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.70049DOI Listing

Publication Analysis

Top Keywords

emission spectra
8
aimd simulations
8
efficient sampling
8
sampling conformational
8
conformational space
8
opp3 opp4
8
aimd-based protocols
4
protocols modeling
4
modeling exciplex
4
exciplex fluorescence
4

Similar Publications

The reduced form of nicotinamide adenine dinucleotide, commonly known as NADH, is an essential coenzyme existing in living organisms. Due to its involvement in various biological process, fluorescence imaging of intracellular NADH levels in different pathological conditions has emerged as an interesting area of research. We report here the exploration of a fluorescent probe, MQ-CN-BTZ, as a dual-channel NADH imaging agent (green and red channels) for cellular systems.

View Article and Find Full Text PDF

Raman-Polarization-Fluorescence Spectroscopic Lidar for Real-Time Detection of Humic-like Substance Profiles.

Environ Sci Technol

March 2025

Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China.

Humic-like substances (HULIS) widely exist in the atmosphere and may strongly affect human health, environment, and climate. However, there are still no accurate methods for detecting the vertical distribution of HULIS. Here, a Raman-Polarization-Fluorescence Spectroscopic Lidar (RPFSL) was developed to simultaneously measure 64-channel broad fluorescence spectra (370-710 nm) of atmospheric aerosols at an excitation wavelength of 355 nm.

View Article and Find Full Text PDF

Lead-free double perovskite (DP) materials have garnered growing interest because of their outstanding optoelectronic attributes. Nevertheless, realizing efficient, multimodal photoluminescence (PL) with adjustable emission spectra within single-host DP materials still poses a formidable hurdle. Herein, Er-based lead-free DPs (CsNaErCl) were developed, which achieves downshift (DS) emissions from visible to near-infrared (NIR) and multicolor upconversion (UC) emissions, resulting from the abundant energy levels of Er ions.

View Article and Find Full Text PDF

ESDPT induced dual-tautomer fluorescence of newly designed 1,8-dihydroxy-2-naphthaldehyde analogue with different solvent polarity.

Spectrochim Acta A Mol Biomol Spectrosc

March 2025

School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250358, China. Electronic address:

Excited-state intramolecular double proton transfer (ESDPT) has long been a subject of attention due to its crucial role in both fundamental exploration and designing related functional materials. In this work, the static and dynamical characterization from first-principles are performed to reveal the ESDPT mechanism of DHNA-2, a molecule designed based on 1,8-dihydroxy-2-naphthaldehyde (DHNA). The modification could provide easier ESDPT with favorable thermodynamics.

View Article and Find Full Text PDF

This paper explores the electronic structure and spectral characteristics of coumarin (C), C-6H, C-153, and C-343 in the protic polar solvent acetonitrile, combining computational methods via Density Functional Theory (DFT) and time-dependent Density Functional Theory (TD-DFT) with experimental analysis of UV-Vis and fluorescence spectra. The optoelectronic features of C, C-6H, C-153, and C-343 are primarily utilized in the solution phase for various applications, such as lasers and dye-sensitized solar cells. Computational studies were conducted using four different Modal Chemistry methods [MC1: CAM-B3LYP/6-311++G(d.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!