L. (PCL) is an annual herb of the genus Psoralea in the family Fabaceae, and its mature fruit can be used medicinally as a precious medicinal herb to tonify muscles and bones. With the deepening of research, its applications to various industries, including food, agriculture, and cosmetics, with products being developed in countries such as Vietnam, India, and Japan. A total of 321 metabolites, including coumarins, flavonoids, meroterpenes, benzofurans, and dimers, were identified in PCL. PCL and related products have demonstrated therapeutic effects, such as antiosteoporosis effects, estrogen-like effects, anti-inflammatory properties, neuroprotection, antitumor activity, and vitiligo treatment. The expression mechanisms of these pharmacological effects are closely related to the regulation of the immune system, the inhibition of oxidative stress, and the induction of apoptosis. This paper summarizes the latest research on the ethnobotany, phytochemistry, processing technology, pharmacology, and hepatotoxicity of PCL. Furthermore, bibliometric analysis was used to systematically analyze the research hotspots and trends in PCL, which have never been addressed in previous reviews of PCL. In the future, it will be necessary to focus on the active metabolites of PCL, analyze its targets and signaling pathway network to address potential toxicity and side effects in clinical applications, and further expand the potential application of PCL in medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788583 | PMC |
http://dx.doi.org/10.3389/fphar.2024.1521040 | DOI Listing |
ACS Appl Bio Mater
March 2025
Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India.
Multidrug resistance (MDR) infectious wounds are a major concern due to drug resistance, leading to increased patient morbidity. Lichenysin (LCN), a lipopeptide and biosurfactant obtained from certain strains of , has demonstrated an excellent antimicrobial property. The present study focuses on the fabrication and comprehensive evaluation of LCN-incorporated poly(vinyl alcohol) (PVA)/polycaprolactone (PCL)-based nanofiber scaffolds using an electrospinning technique as a potential wound healing biomaterial for the treatment of MDR infectious wounds in diabetic rats.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
March 2025
The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China. Electronic address:
The degradation of extracellular matrix proteins such as collagen and elastin with aging leads to skin sagging. Polycaprolactone (PCL) microspheres are used as facial fillers because of their ability to provide volume, biodegradability, and collagen-stimulating properties. The direct biological effects of PCL microspheres on fibroblasts, particularly in stimulating sustained collagen production, require further investigation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
Transient electronics, designed to degrade after a defined period, are ideal for biomedical implants that eliminate the need for secondary removal surgeries and contribute to sustainable electronics by leaving no electronic waste. While significant progress has been made in developing semiconductors, electrodes, and substrates, dielectric layers for bioapplicable transient electronics that combine flexibility, self-healing capabilities, and high dielectric constants (high-k) remain underexplored. This study introduces urea-linked polycaprolactone (PCL-IU)/ionic liquid (IL) hybrids as dielectric materials.
View Article and Find Full Text PDFHeliyon
February 2025
Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran.
The repair of damaged peripheral nerves and the following restoration of functionality remain significant therapeutic challenges. Hollow nerve conduits currently available do not align with the ideal human model. Successfully mending nerve gaps requires incorporating biomimetic and functional features into neural conduit design.
View Article and Find Full Text PDFRSC Adv
March 2025
Department of Chemistry, Faculty of Science, King Khalid University PO Box 9004 Abha 61413 Saudi Arabia.
Strontium phosphorus chloride (SrPCl) presents a promising option for photovoltaic (PV) applications due to its distinctive optical, electrical, and structural characteristics. This research uses density functional theory (DFT) to examine its structural stability and optoelectronic properties. The PV performance of SrPCl-based cell designs was examined, utilizing an electron transport layer (ETL) of ZnO and four different hole transport layers (HTLs): CuO, CBTS, MoO, and CuI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!