Introduction: Alzheimer's disease (AD) is a neurodegenerative disorder that significantly impacts the cognitive function and memory of a person. Despite the significant research efforts, the ability to completely prevent or effectively treat AD and its related dementias remains limited. Protein kinases are integral to AD pathology and represent promising targets for therapeutic intervention.

Methods: A series of pyrimidine-based compounds 4-(4-(arylsulfonyl)piperazin-1-yl)-6-(thiophen-3-yl)pyrimidine derivatives (-) were synthesized and characterised. ATPase inhibition was carried out against the MARK4 enzyme. Molecular docking and molecular dynamics (MD) simulation at 500 ns was carried out against MARK4 (PDB: 5ES1). The drug-likeness feature and toxicity of the molecules were evaluated using QikProp and other tools.

Results: Compounds were synthesized following a multi-step approach and characterized using multi-nuclear magnetic resonance (H/C-NMR) and mass spectrometry. ATPase inhibition assay of the compounds against MARK4 showed an IC value in the micromolar (μM) range. The results of the docking studies were consistent with the experiments and identified () and () as the candidates with the highest affinity towards MARK4. MD simulation further supported these results, showing that the binding of ligands stabilises the target protein.

Conclusion: Using experimental and theoretical approaches, we demonstrated that the reported class of pyrimidine derivatives are an excellent starting point for developing the next-generation anti-AD drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788324PMC
http://dx.doi.org/10.3389/fphar.2024.1517504DOI Listing

Publication Analysis

Top Keywords

atpase inhibition
8
carried mark4
8
mark4
5
46-disubstituted pyrimidine-based
4
pyrimidine-based microtubule
4
microtubule affinity-regulating
4
affinity-regulating kinase
4
kinase mark4
4
mark4 inhibitors
4
inhibitors synthesis
4

Similar Publications

FcrX coordinates cell cycle and division during free-living growth and symbiosis by a ClpXP-dependent mechanism.

Proc Natl Acad Sci U S A

March 2025

Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette 91198, France.

is a soil bacterium that establishes a nitrogen-fixing symbiosis within root nodules of legumes. In this symbiosis, undergoes a drastic cellular change leading to a terminally differentiated form, called bacteroid, characterized by genome endoreduplication, increased cell size, and high membrane permeability. Bacterial cell cycle (mis)regulation is at the heart of this differentiation process.

View Article and Find Full Text PDF

Na,K-ATPase is an electrogenic pump found in cell plasma membranes that acts as the basic unit of animal life. This enzyme is highly susceptible to cardiotonic steroid (CTS) inhibition. The role of Na,K-ATPase in signaling has introduced a novel viewpoint regarding the enzyme's function, as the ouabain-binding site is involved in several physiological processes.

View Article and Find Full Text PDF

The second and third most frequently diagnosed cancers worldwide are breast (2.3 million new cases) and colorectal (1.9 million new cases), respectively.

View Article and Find Full Text PDF

Phosphodiesterase inhibitors regulate intracellular Ca of cardiomyocytes through enhancing second messenger signalling. This study aimed to investigate whether TP-10, a selective phosphodiesterase10A inhibitor, modulates Ca cycling, attenuating arrhythmogenesis in the right ventricular outflow tract (RVOT). Right ventricular tissues from New Zealand white rabbits were harvested, and electromechanical analyses of ventricular tissues were conducted.

View Article and Find Full Text PDF

The autophagy-lysosomal system comprises a highly dynamic and interconnected vesicular network that plays a central role in maintaining proteostasis and cellular homeostasis. In this study, we uncovered the deubiquitinating enzyme (DUB), dUsp45/USP45, as a key player in regulating autophagy and lysosomal activity in Drosophila and mammalian cells. Loss of dUsp45/USP45 results in autophagy activation and increased levels of V-ATPase to lysosomes, thus enhancing lysosomal acidification and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!