Active vision in freely moving marmosets using head-mounted eye tracking.

Proc Natl Acad Sci U S A

Department of Psychology, Cortical Systems and Behavior Lab, University of California San Diego, San Diego, CA 92093.

Published: February 2025

Our understanding of how vision functions as primates actively navigate the real-world is remarkably sparse. As most data have been limited to chaired and typically head-restrained animals, the synergistic interactions of different motor actions/plans inherent to active sensing-e.g., eyes, head, posture, movement, etc.-on visual perception are largely unknown. To address this considerable gap in knowledge, we developed an innovative wireless head-mounted eye-tracking system that performs Chair-free Eye-Recording using Backpack mounted micROcontrollers (CEREBRO) for small mammals, such as marmoset monkeys. Because eye illumination and environment lighting change continuously in natural contexts, we developed a segmentation artificial neural network to perform robust pupil tracking in these conditions. Leveraging this innovative system to investigate active vision, we demonstrate that although freely moving marmosets exhibit frequent compensatory eye movements equivalent to other primates, including humans, the predictability of the visual behavior (gaze) is higher when animals are freely moving relative to when they are head-fixed. Moreover, despite increases in eye/head-motion during locomotion, gaze stabilization remains steady because of an increase in vestibularocular reflex gain during locomotion. These results demonstrate the efficient, dynamic visuo-motor mechanisms and related behaviors that enable stable, high-resolution foveal vision in primates as they explore the natural world.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11831172PMC
http://dx.doi.org/10.1073/pnas.2412954122DOI Listing

Publication Analysis

Top Keywords

freely moving
12
active vision
8
moving marmosets
8
vision freely
4
marmosets head-mounted
4
head-mounted eye
4
eye tracking
4
tracking understanding
4
understanding vision
4
vision functions
4

Similar Publications

Cerebrospinal fluid (CSF) dynamics hold implications for neurological health. Despite its importance, accurate quantification of the CSF secretion rate remains a challenge due to methodological controversies and the influence of anesthesia. A novel technique is established to determine CSF dynamics in awake and freely moving rats, and the CSF secretion is quantified with three different methodologies.

View Article and Find Full Text PDF

Visual pursuit: Coordinated eye and head movements guide navigation over fixation.

Curr Biol

March 2025

Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA. Electronic address:

Predators track prey while navigating complex environments. A new study in freely moving ferrets reveals that, during visual pursuit, saccadic eye movements optimize optic flow patterns, rather than track targets.

View Article and Find Full Text PDF

Ischemic stroke (IS) commonly results in long-term disability, largely due to alterations in neuronal networks. In repeatable rodent IS model under naturalistic conditions, the difficulty of capturing single-cell neuronal activities and how this solves a long-standing challenge is still remained. Here, we combined a photothrombotic stroke model with head-mounted miniaturized two-photon microscopy (mTPM) to achieve longitudinal, real-time imaging of GABAergic neurons in the contralesional primary motor cortex (M1) in freely moving mice.

View Article and Find Full Text PDF

Fluorescent sensors have revolutionized the measurement of molecules in the brain, and the dLight dopamine sensor has been used extensively to examine reward- and cue-evoked dopamine release, but only recently has the field turned its attention to spontaneous release events. Analysis of spontaneous events typically requires evaluation of hundreds of events over minutes to hours, and the most common method of analysis, z-scoring, was not designed for this purpose. Here, we compare the accuracy and reliability of three different analysis methods to identify pharmacologically induced changes in dopamine release and uptake in freely moving C57BL/6J mice.

View Article and Find Full Text PDF

Erasable hippocampal neural signatures predict memory discrimination.

Cell Rep

March 2025

Center for Systems Neuroscience, Boston University, Boston, MA 02451, USA. Electronic address:

Memories involving the hippocampus can take several days to consolidate, challenging efforts to uncover the neuronal signatures underlying this process. Here, we use calcium imaging in freely moving mice to track the hippocampal dynamics underlying memory consolidation across a 10-day contextual fear conditioning task. We find two neural signatures that emerge following learning and predict memory performance: context-specific place field remapping and coordinated neural activity prior to memory recall (freezing).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!