Neuroimaging, specifically magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET), plays an important role in improving the therapeutic landscape of pediatric neuropsychopharmacology by detecting target engagement, pathway modulation, and disease-related changes in the brain. This review provides a comprehensive update on the application of neuroimaging to detect neural effects of psychotropic medication in pediatrics. Additionally, we discuss opportunities and challenges for expanding the use of neuroimaging to advance pediatric neuropsychopharmacology. PubMed and Embase were searched for studies published between 2012 and 2024 reporting neural effects of attention deficit hyperactivity disorder (ADHD) medications (e.g., methylphenidate, amphetamine, atomoxetine, guanfacine), selective serotonin reuptake inhibitors (e.g., fluoxetine, escitalopram, sertraline), serotonin/norepinephrine reuptake inhibitors (e.g., duloxetine, venlafaxine), second-generation antipsychotics (e.g., aripiprazole, olanzapine, risperidone, quetiapine, ziprasidone), and others (e.g., lithium, carbamazepine, lamotrigine, ketamine, naltrexone) used to treat pediatric psychiatric conditions. Of the studies identified (N = 57 in 3314 pediatric participants), most (86%, total participants n = 3045) used MRI to detect functional pathway modulation or anatomical changes. Fewer studies (14%, total participants n = 269) used MRS to understand neurochemical modulation. No studies used PET. Studies that included healthy controls detected normalization of disease-altered pathways following treatment. Studies that focused on affected youth detected neuromodulation following single-dose and ongoing treatment. Neuroimaging is positioned to serve as a biomarker capable of demonstrating acute brain modulation, predicting clinical response, and monitoring disease, yet biomarker validation requires further work. Neuroimaging is also well suited to fill the notable knowledge gap of long-term neuromodulatory effects of psychotropic medications in the context of ongoing brain development in children and adolescents. Future studies can leverage advancements in neuroimaging technology, acquisition, and analysis to fill these gaps and accelerate the discovery of novel therapeutics, leading to more effective prescribing and ensuring faster recovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s40272-025-00683-9 | DOI Listing |
JAMA Netw Open
March 2025
Department of Psychiatry, University of Oxford, Oxford, United Kingdom.
Importance: Epidemiological studies suggest that lifestyle factors are associated with risk of dementia. However, few studies have examined the association of diet and waist to hip ratio (WHR) with hippocampus connectivity and cognitive health.
Objective: To ascertain how longitudinal changes in diet quality and WHR during midlife are associated with hippocampal connectivity and cognitive function in later life.
Aging Dis
March 2025
Department of Radiology, Peking University Third Hospital, Beijing, China.
Neurochemical imbalance is a contributing factor to neurological symptoms in multiple sclerosis (MS). The matured myelin sheath is crucial for substance transportation within the extracellular space (ECS) and for maintaining local homeostasis. Therefore, we hypothesize that disturbed ECS transportation following demyelinating lesions might lead to neurochemical imbalance in MS.
View Article and Find Full Text PDFAddict Biol
March 2025
Departament de Psicologia Bàsica, Clínica i Psicobiologia, Universitat Jaume I, Castellón, Spain.
Repetitive drug use results in enduring structural and functional changes in the brain. Addiction research has consistently revealed significant modifications in key brain networks related to reward, habit, salience, executive function, memory and self-regulation. Techniques like Voxel-based Morphometry have highlighted large-scale structural differences in grey matter across distinct groups.
View Article and Find Full Text PDFElife
March 2025
Department of Neuroscience, Georgetown University Medical Center, Washington DC, United States.
Research on brain plasticity, particularly in the context of deafness, consistently emphasizes the reorganization of the auditory cortex. But to what extent do all individuals with deafness show the same level of reorganization? To address this question, we examined the individual differences in functional connectivity (FC) from the deprived auditory cortex. Our findings demonstrate remarkable differentiation between individuals deriving from the absence of shared auditory experiences, resulting in heightened FC variability among deaf individuals, compared to more consistent FC in the hearing group.
View Article and Find Full Text PDFJ Magn Reson Imaging
March 2025
Department of Radiology, Central Hospital of Dalian University of Technology, Dalian, People's Republic of China.
Unlabelled: Four-dimensional flow cardiovascular magnetic resonance (4D Flow cardiac MRI) is an advanced non-invasive imaging technology, and its derived kinetic energy (KE) blood flow parameters have been confirmed as a potential biomarkers for assessing ventricular hemodynamics. This review synthesizes details on the methodology, clinical significance, and current status of studies focused on quantifying KE parameters of the ventricle using 4D Flow cardiac MRI, providing an objective foundation for further exploration of the value of KE in cardiac diseases.
Study Type: retrospective.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!