Natural drugs have the advantages of multi-pathway, multi-target, low toxicity, and high efficiency, which make them widely used and effective in anti-tumor therapy. Dioscin is a steroidal saponin compound that can be extracted from Dioscaceae plants. In recent years, it has been found that Dioscin has potent anti-tumor effects, can inhibit tumor cell proliferation, induce apoptosis and autophagy, inhibits tumor cell metastasis, reverses multidrug resistance, and increases sensitivity to anticancer drugs, and thus inhibit tumor progression. Meanwhile, the construction of Dioscin nanocarriers can improve the efficiency of drug use, reduce drug toxicity, realize the precise delivery of drugs, and improve the bioavailability of Dioscin. In this paper, the anticancer mechanism and targets of Dioscin in recent years were reviewed, thereby providing new ideas and a theoretical basis for further research and promotion of Dioscin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790812 | PMC |
http://dx.doi.org/10.1007/s12032-024-02572-6 | DOI Listing |
Ann Med
December 2025
Department of Assisted Reproductive Centre, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China.
Background: Butyrate may inhibit SARS-CoV-2 replication and affect the development of COVID-19. However, there have been no systematic comprehensive analyses of the role of butyrate metabolism-related genes (BMRGs) in COVID-19.
Methods: We performed differential expression analysis of BMRGs in the brain, liver and pancreas of COVID-19 patients and controls in GSE157852 and GSE151803.
J Cell Mol Med
March 2025
Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China.
The global incidence of biliary tract cancer (BTC) is on the rise, presenting a substantial healthcare challenge. The integration of immune checkpoint inhibitors (ICIs) with molecularly targeted therapies is emerging as a strategy to enhance immune responses. However, the efficacy and underlying mechanisms of these treatments in BTC are still largely unexplored.
View Article and Find Full Text PDFACS Appl Bio Mater
March 2025
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
Photodynamic therapy (PDT) has been demonstrated to be an effective tool for cancer treatment. Seeking organelle-targeting photosensitizers (PSs) with robust reactive oxygen species (ROS) production is extremely in demand. Herein, we propose an aggregation-induced photosensitization strategy for effective PDT with osmium complexes.
View Article and Find Full Text PDFBackground: Cancer cells display oxidative metabolic dysregulation to fulfill their bioenergy requirements. Specifically, efforts were made to regulate the metabolite succinate and its negative effects as an inducer for neoplasm invasion and metastasis.
Methods: Binding affinity of naringenin (NAR) to mitochondria complex II (CΙΙ) subunits, sirtuin3 (SIRT3), tumor necrosis factor associate protein 1(TRAP1), and succinate receptor (SUCNR1) was studied by molecular docking.
Zhong Nan Da Xue Xue Bao Yi Xue Ban
October 2024
Research for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou Jiangsu 215123, China.
Objectives: Osteoporosis is characterized by decreased bone mass and damaged bone microstructure, often leading to fragility fractures. Low bone mineral density is a key risk factor for fractures. Serum cystatin C (CysC), an endogenous marker of glomerular filtration rate, is negatively correlated with bone mineral density and may be a potential risk factor for osteoporosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!