Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Two-dimensional-material-based memristor arrays hold promise for data-centric applications such as artificial intelligence and big data. However, accessing individual memristor cells and effectively controlling sneak current paths remain challenging. Here, we propose a van der Waals engineering approach to create one-transistor-one-memristor (1T1M) cells by assembling the emerging two-dimensional ferroelectric CuCrPS with MoS and -BN. The memory cell exhibits high resistance tunability (10), low sneak current (120 fA), and low static power (12 fW). A neuromorphic array with greatly reduced crosstalk is experimentally demonstrated. The nonvolatile resistance switching is driven by electric-field-induced ferroelectric polarization reversal. This van der Waals engineering approach offers a universal solution for creating compact and energy-efficient 2D in-memory computation systems for next-generation artificial neural networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827105 | PMC |
http://dx.doi.org/10.1021/acs.nanolett.4c06118 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!