Climate extremes such as droughts are expected to increase in frequency and intensity with global change. Therefore, it is important to map and predict ecosystem responses to such extreme events to maintain ecosystem functions and services. Alongside abiotic factors, biotic factors such as the proportion of needle and broadleaf trees were found to affect forest drought responses, corroborating results from biodiversity-ecosystem functioning (BEF) experiments. Yet it remains unclear to what extent the behavior of non-experimental systems at large scales corresponds to the relationships discovered in BEF experiments. Using remote sensing, the trait-based functional diversity of forest ecosystems can be directly quantified. We investigated the relationship between remotely sensed functional richness and evenness and forest drought responses using data from temperate mixed forests in Switzerland, which experienced an extremely hot and dry summer in 2018. We used Sentinel-2 satellite data to assess aspects of functional diversity and quantified drought response in terms of resistance, recovery, and resilience from 2017 to 2020 in a scalable approach. We then analyzed the BEF relationship between functional diversity measures and drought response for different aggregation levels of richness and evenness of three physiological canopy traits (chlorophyll, carotenoid/chlorophyll ratio, and equivalent water thickness). Forest stands with greater trait richness were more resistant and resilient to the drought event, and the relationship of trait evenness with resistance or resilience was hump-shaped or negative, respectively. These results suggest forest functional diversity can support forests in such drought responses via a mixture of complementarity and dominance effects, the first indicated by positive richness effects and the second by negative evenness effects. Our results link ecosystem functioning and biodiversity at large scales and provide new insights into the BEF relationships in non-experimental forest ecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789211PMC
http://dx.doi.org/10.1111/gcb.70059DOI Listing

Publication Analysis

Top Keywords

functional diversity
16
drought response
12
drought responses
12
forest drought
8
bef experiments
8
large scales
8
forest ecosystems
8
richness evenness
8
drought
7
forest
6

Similar Publications

Background: This study aimed to comprehensively characterize the gut microbiome and identify individual and grouped gut microbes associated with food allergy (FA) using 16S rRNA gene sequencing.

Methods: Fecal samples were collected from children with IgE-mediated FA and from sex- and age-matched controls. The V3-V4 variable regions of the 16S rRNA gene of the gut microbiome were profiled using next-generation sequencing (Illumina, USA).

View Article and Find Full Text PDF

Advancing Recombinant Protein Expression in Komagataella phaffii: Opportunities and Challenges.

FEMS Yeast Res

March 2025

State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

Komagataella phaffii has gained recognition as a versatile platform for recombinant protein production, with applications covering biopharmaceuticals, industrial enzymes, food additives, etc. Its advantages include high-level protein expression, moderate post-translational modifications, high-density cultivation, and cost-effective methanol utilization. Nevertheless, it still faces challenges for the improvement of production efficiency and extension of applicability.

View Article and Find Full Text PDF

In situ global mapping of protein perturbations via protein abundance and conformation analysis.

Anal Chim Acta

May 2025

State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Dadao, Nanjing, 211198, China. Electronic address:

Background: Traditional studies of protein responses to external stimuli primarily focus on changes in protein abundance, often overlooking the critical role of protein conformational alterations. To address this gap, we developed Protein Abundance and Conformation Analysis (PACA), an integrative method that quantifies both protein abundance and conformational changes. PACA combines conventional quantitative proteomics for abundance measurements with Target Response Accessibility Profiling (TRAP), a technique that captures conformational changes in situ by applying reductive dimethylation to label accessible lysine residues in living cells before lysis.

View Article and Find Full Text PDF

Mass spectrometric monitoring of redox transformation and arylation of tryptophan.

Anal Chim Acta

May 2025

State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, PR China; College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, PR China; Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China; Center for Instrumental Analysis, Guangxi University, Nanning, Guangxi, 530004, PR China. Electronic address:

Tryptophan (Trp) is an essential amino acid obtained from human diet. It is involved not only in de novo biosynthesis of proteins but also in complex metabolic pathways. Redox transformation of tryptophan is under-explored in comparison with kynurenine, serotonin and indole pyruvate pathways.

View Article and Find Full Text PDF

Background: Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant with significant risks to ecosystems and human health. Magnetic molecularly imprinted polymers (MIPs) provide a promising solution for selectively extracting PFOS from contaminated water. However, while bifunctional monomer imprinting improves the imprinting effect by introducing diverse functional groups, it can also increase non-specific adsorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!