A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sex-specific transcriptome similarity networks elucidate comorbidity relationships. | LitMetric

Humans present sex-driven biological differences. Consequently, the prevalence of analyzing specific diseases and comorbidities differs between the sexes, directly impacting patients' management and treatment. Despite its relevance and the growing evidence of said differences across numerous diseases (with 4,370 PubMed results published within the past year), knowledge at the comorbidity level remains limited. In fact, to date, no study has attempted to identify the biological processes altered differently in women and men, promoting differences in comorbidities. To shed light on this problem, we analyze expression data for more than 100 diseases from public repositories, analyzing each sex independently. We calculate similarities between differential expression profiles by disease pairs and find that 13-16% of transcriptomically similar disease pairs are sex-specific. By comparing these results with epidemiological evidence, we recapitulate 53-60% of known comorbidities distinctly described for men and women, finding sex-specific transcriptomic similarities between sex-specific comorbid diseases. The analysis of shared underlying pathways shows that diseases can co-occur in men and women by altering alternative biological processes. Finally, we identify different drugs differentially associated with comorbid diseases depending on patients' sex, highlighting the need to consider this relevant variable in the administration of drugs due to their possible influence on comorbidities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785135PMC
http://dx.doi.org/10.1101/2025.01.22.634077DOI Listing

Publication Analysis

Top Keywords

biological processes
8
disease pairs
8
men women
8
comorbid diseases
8
diseases
6
sex-specific
4
sex-specific transcriptome
4
transcriptome similarity
4
similarity networks
4
networks elucidate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!