The stability and function of biomolecules are directly influenced by their myriad interactions with water. In this study, we investigated water through cryogenic electron microscopy (cryo-EM) on a highly solvated molecule, the ribozyme, determined at 2.2 and 2.3 Å resolutions. By employing segmentation-guided water and ion modeling (SWIM), an approach combining resolvability and chemical parameters, we automatically modeled and cross-validated water molecules and Mg ions in the ribozyme core, revealing the extensive involvement of water in mediating RNA non-canonical interactions. Unexpectedly, in regions where SWIM does not model ordered water, we observed highly similar densities in both cryo-EM maps. In many of these regions, the cryo-EM densities superimpose with complex water networks predicted by molecular dynamics (MD), supporting their assignment as water and suggesting a biophysical explanation for their elusiveness to conventional atomic coordinate modeling. Our study demonstrates an approach to unveil both rigid and flexible waters that surround biomolecules through cryo-EM map densities, statistical and chemical metrics, and MD simulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785237PMC
http://dx.doi.org/10.1101/2025.01.23.634578DOI Listing

Publication Analysis

Top Keywords

complex water
8
water networks
8
cryogenic electron
8
electron microscopy
8
water
8
networks visualized
4
visualized 22-23
4
22-23 cryogenic
4
microscopy rna
4
rna stability
4

Similar Publications

Objectives: to assess prevalence, intensity, discomfort, defining characteristics of thirst and signs of oral mucosa hydration in Intensive Care Unit patients.

Methods: quantitative and analytical study, carried out in a tertiary hospital in six of the seven Intensive Care Units, with a sample of 60 patients. Variables related to thirst were analyzed according to their nature.

View Article and Find Full Text PDF

An Eu Coordination Polymer: Its Single-Crystal Transformation Synthesis, Fluorescence Detection of Melamine, and Proton Conductivity.

Inorg Chem

March 2025

College of Chemistry and Chemical Engineering,Inner Mongolia Key Laboratory of Rare Earth Catalysis, Inner Mongolia University, Hohhot 010021, China.

In this work, an Eu coordination polymer () was synthesized by a single-crystal-to-single-crystal transformation based upon complex under the stimulation of water molecules ({[Eu(bpdc)(HO)]·4HO} (), {[Eu(bpdc)(HO)]·5HO} (), and Hbpdc = 2,2'-bipyridine-3,3'-dicarboxylic acid ligand). Complex exhibited considerable pH fluorescence stability in an aqueous solution. Notably, the experiment showed that complex achieved high selectivity and sensitivity for the detection of the notorious food additive melamine (MEL) through a significant fluorescence enhancement response; and yet complex had no fluorescent response with MEL.

View Article and Find Full Text PDF

Perovskite Type ABO Oxides in Photocatalysis, Electrocatalysis, and Solid Oxide Fuel Cells: State of the Art and Future Prospects.

Chem Rev

March 2025

WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, Western Australia 6102, Australia.

Since photocatalytic and electrocatalytic technologies are crucial for tackling the energy and environmental challenges, significant efforts have been put into exploring advanced catalysts. Among them, perovskite type ABO oxides show great promising catalytic activities because of their flexible physical and chemical properties. In this review, the fundamentals and recent progress in the synthesis of perovskite type ABO oxides are considered.

View Article and Find Full Text PDF

Background: Obesity is a complex disease that has become increasingly prevalent. While obesity itself is not new, its widespread occurrence is a more recent concern. Stimulating brown adipose tissue (BAT) and promoting the browning of white adipose tissue (bWAT) have shown promise as therapeutic targets to increase energy expenditure and counteract weight gain.

View Article and Find Full Text PDF

A new cobalt complex, bis-[tris-(amino-thio-urea)cobalt(III)] bis-[2-(carb-oxy-methyl)-2-hy-droxy-butane-dioato]cobalt(II) tetra-nitrate tetra-hydrate, [Co(CHNS)][Co(CHO)](NO)·2HO, designated as [Co(tsc)][Co(cit)](NO)·4HO, was synthesized. Two crystallographically independent cobalt centers are present. In the first, the central metal atom is chelated by three thio-semicarbazide ligands in a bidentate fashion whereas the second, positioned on a crystallographic inversion center, is hexa-coordinated by two citrate anions in a distorted octa-hedral geometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!