Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Epstein-Barr virus (EBV) is the first human cancer-causing viral pathogen to be discovered; it has been epidemiologically associated with a wide range of diseases, including cancers, autoimmunity, and hyperinflammatory disorders. Its evolutionary success is underpinned by coordinated expression of viral transcription factors (EBV nuclear antigens), signaling proteins (EBV latent membrane proteins), and noncoding RNAs, which orchestrate cell transformation, immune evasion, and dissemination. Each of those activities entails significant metabolic rewiring, which is achieved by viral subversion of key host metabolic regulators such as the mammalian target of rapamycin (mTOR), MYC, and hypoxia-inducible factor (HIF). In this review, we systemically discuss how EBV-encoded factors regulate metabolism to achieve viral persistence and propagation, as well as potential research questions and directions in EBV-driven metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmv.70197 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!