Simultaneous gene editing of both nuclei in a dikaryotic strain of Ganoderma lucidum using Cas9-gRNA ribonucleoprotein.

J Microbiol

Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.

Published: January 2025

The presence of multiple nuclei in a common cytoplasm poses a significant challenge to genetic modification in mushrooms. Here, we demonstrate successful gene editing in both nuclei of a dikaryotic strain of Ganoderma lucidum using the Cas9-gRNA ribonucleoprotein complex (RNP). The RNP targeting the pyrG gene was introduced into dikaryotic protoplasts of G. lucidum, resulting in the isolation of 31 mycelial colonies resistant to 5-fluoroorotic acid (5-FOA). Twenty-six of these isolates were confirmed as dikaryotic strains by the presence of two distinct A mating type markers, denoted as A1 and A2. All dikaryons exhibited clamp connections on their mycelial hyphae, while the remaining 5 transformants were monokaryotic. Subsequent sequence analysis of PCR amplicons targeting pyrG revealed that two dikaryons harbored disrupted pyrG in both nuclei (pyrG-/pyrG-), while 10 and 14 displayed pyrG+/pyrG- (A1/A2) and pyrG-/pyrG+ (A1/A2) configurations, respectively. The disruption was achieved through non-homologous end joining repair, involving deletion or insertion of DNA fragments at the site of the double-strand break induced by RNP. Importantly, the nuclei were stable throughout 10 serial transfers over a period of 6 months. These findings highlight the capability of RNP to target genes across multiple nuclei within the same cytoplasm.

Download full-text PDF

Source
http://dx.doi.org/10.71150/jm.2409006DOI Listing

Publication Analysis

Top Keywords

gene editing
8
editing nuclei
8
nuclei dikaryotic
8
dikaryotic strain
8
strain ganoderma
8
ganoderma lucidum
8
lucidum cas9-grna
8
cas9-grna ribonucleoprotein
8
multiple nuclei
8
targeting pyrg
8

Similar Publications

Development of an efficient and heritable virus-induced genome editing system in .

Hortic Res

April 2025

Department of Bioresources Engineering, Sejong University, Neungdong-ro 209, Gwangjin-gu, Seoul 05006, Republic of Korea.

The CRISPR-Cas9 system can be used to introduce site-specific mutations into the genome of tomato () plants. However, the direct application of this revolutionary technology to desirable tomato cultivars has been hindered by the challenges of generating transgenic plants. To address this issue, we developed an efficient and heritable genome editing system using tobacco rattle virus (TRV) for an elite tomato cultivar (the paternal line of Saladette).

View Article and Find Full Text PDF

DNA methylation consists of 5-methylcytosine and N6-methyl deoxyadenosine (6mA) and is crucial in plant development. However, its specific role and potential mechanism to initiate cotton fibers remain unclear. This study employed Oxford Nanopore Technologies (ONT) sequencing to analyze DNA methylation alterations in ZM24 and ZM24 fuzzless-lintless (ZM24fl) during fiber initiation.

View Article and Find Full Text PDF

Precise engineering of gene expression by editing plasticity.

Genome Biol

March 2025

National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.

Background: Identifying transcriptional cis-regulatory elements (CREs) and understanding their role in gene expression are essential for the precise manipulation of gene expression and associated phenotypes. This knowledge is fundamental for advancing genetic engineering and improving crop traits.

Results: We here demonstrate that CREs can be accurately predicted and utilized to precisely regulate gene expression beyond the range of natural variation.

View Article and Find Full Text PDF

Molecular breeding of pigs in the genome editing era.

Genet Sel Evol

March 2025

College of Animal Sciences, Jilin University, Changchun, 130062, China.

Background: To address the increasing demand for high-quality pork protein, it is essential to implement strategies that enhance diets and produce pigs with excellent production traits. Selective breeding and crossbreeding are the primary methods used for genetic improvement in modern agriculture. However, these methods face challenges due to long breeding cycles and the necessity for beneficial genetic variation associated with high-quality traits within the population.

View Article and Find Full Text PDF

Mitochondrial genetics, signalling and stress responses.

Nat Cell Biol

March 2025

Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Mitochondria are multifaceted organelles with crucial roles in energy generation, cellular signalling and a range of synthesis pathways. The study of mitochondrial biology is complicated by its own small genome, which is matrilineally inherited and not subject to recombination, and present in multiple, possibly different, copies. Recent methodological developments have enabled the analysis of mitochondrial DNA (mtDNA) in large-scale cohorts and highlight the far-reaching impact of mitochondrial genetic variation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!