Metal-based catalysts ranging from nanoparticles (NPs) to the atomic level usually exhibit varying catalytic performance. The underlying size effect is both fascinating and evident. This study thoroughly investigates the size-dependent effects of Fe-based catalysts on catalytic transfer hydrogenation (CTH) of furfural (FF) at the atomic level. Fe was precisely loaded onto N-doped porous carbon in three forms: single atoms (Fe-SAs/NC), atomic clusters (Fe-ACs/NC), and nanoparticles (Fe-NPs/NC). This was achieved through meticulous control of the iron precursor composition. Remarkably, Fe-SAs/NC exhibited exceptional catalytic efficiency, achieving an FF conversion of 91.3% and a turnover frequency (TOF) of 262.3 h at 110 °C, which is 9.2 times higher than Fe-ACs/NC and an impressive 93.7 times higher than Fe-NPs/NC. The high selectivity of Fe-SAs/NC toward furfuryl alcohol was further substantiated by theoretical calculations. These calculations indicated the benefits from the η(O)-aldehyde adsorption configuration, formed by the vertical adsorption of FF molecules on the Fe-N active sites. Geometrical optimization of the catalyst at the atomic scale enhances its intrinsic catalytic activity and selectivity. The proposed size effect on catalytic activity provides deeper insights into the mechanism of single-atom catalytic hydrogenation and contributes to the exploration of high-performance catalysts at the atomic level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.4c05479 | DOI Listing |
PLoS One
March 2025
Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
DNA polymerase β, a member of the X-family of DNA polymerases, undergoes complex regulations both in vitro and in vivo through various posttranslational modifications, including phosphorylation and methylation. The impact of these modifications varies depending on the specific amino acid undergoing alterations. In vitro, methylation of DNA polymerase β with the enzyme protein arginine methyltransferase 6 (PRMT6) at R83 and R152 enhances polymerase activity by improving DNA binding and processivity.
View Article and Find Full Text PDFJ Mol Model
March 2025
College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an 271018, China.
Context: TEMPO-oxidized cellulose nanofibers (TOCNFs) show significant potential for developing high-performance resistive humidity sensors due to their hydrophilicity and structural adaptability. However, the underlying atomic-scale mechanisms governing their humidity response remain poorly understood. Using molecular dynamics simulations, this study investigates how crystal facets, nanopore widths, and humidity levels influence the surface wettability, water permeability, and swelling of TOCNFs.
View Article and Find Full Text PDFNanoscale
March 2025
CybreBrain Research Section, Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon 305-700, Republic of Korea.
To achieve an intimate contact between neuronal cells and the electrode in non-invasive platforms intended for neurological research, in this study, we fabricated a raised-type Au multi-electrode array (MEA) by employing nanoscale-thick indium-tin oxide (ITO; 50 nm) as a track layer and plasma-enhanced atomic layer-deposited (PEALD) AlO (30-60 nm) and HfO (20 nm) as passivation layers. The PEALD AlO-passivated Au MEA was subsequently modified with electrodeposited AuPt nanoparticles (NPs) and IrO to demonstrate the passivation capability and chemical resistance of AlO to Au-, Pt-, and IrO NP-containing electrolytes. AlO-passivated and IrO/AuPt-modified MEAs could resolve optogenetically activated spikes and spontaneous activities with a root-mean-square noise level of 2.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Institute of Wide Bandgap Semiconductors and Future Lighting, Academy for Engineering & Technology, Fudan University, Shanghai 200433, China.
The progression of SiC MOSFET technology from planar to trench structures requires optimized gate oxide layers within the trench to enhance device performance. In this study, we investigated the interface characteristics of HfO and SiO/HfO gate dielectrics grown by atomic layer deposition (ALD) on SiC trench structures. The trench structure morphology was revealed using scanning electron microscopy (SEM).
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
Sodium-sulfur batteries have been provided as a highly attractive solution for large-scale energy storage, benefiting from their substantial storage capacity, the abundance of raw materials, and cost-effectiveness. Nevertheless, conventional sodium-sulfur batteries have been the subject of critique due to their high operating temperature and costly maintenance. In contrast, room-temperature sodium-sulfur batteries exhibit significant advantages in these regards.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!